User’s Guide to

Accolade
PeakVHDL

Professional Edition

550 Kirkland Way, Suite 200

Kirkland, WA 98033

(800) 470-2686

http://www.peakvhdl.com

email: sales@peakvhdl.com, support@peakvhdl.com

Product License, Limited Warranty and Limitation of Liability (The Small Print)

This software is licensed to you for use by only one person at a time. You may copy the software for archival
purposes, but may not distribute the software to persons who are not licensed users of the product. This software is
protected by U.S. and international copyright law and cannot be copied or otherwise made available to more one
person at a time without violating the law. Giving or otherwise transferring all of your rights to the software to
someone else will not violate copyright laws, if you give all of the software and documentation (including this
license) to that person. In the event that this software is transferred to another person, you must inform Accolade
Design Automation of such a transfer so that the new owner can be registered as an authorized user. Remember,
once you transfer your rights to this software to another person, you cannot continue to use the software or keep
any copies of the software.

Adding More Users
To allow more than one person to use this software, you must purchase additional software for each person.
Upgrades

If this software is an upgrade version of software that you previously acquired, you have not acquired two different
licenses to use this software and its earlier version. This upgrade and the earlier version together constitute just one
copy of the software and must be used by one person (or transferred together to only one person).

Other Limits on Your Use

Except as described in this license, you may not transfer, rent, lease, lend, copy, modify, translate, sublicense, time-
share, electronically transmit or receive, or decompile or reverse engineer this software or the media and documen-
tation.

Limited Warranty

This software package may or may not include a written guarantee, provided by Accolade Design Automation, Inc.
or an independent software distributor, which for a limited period of time may entitle you to a full or partial refund of
the amount actually paid for the software. Such a guarantee is subject to the terms and conditions described
separately, and is not provided (expressly or implicitly) by this license.

Also, the physical media for this software product provided by Accolade Design Automation, Inc. are guaranteed to
be free of defects in materials and workmanship for 120 days from the date this product was originally purchased. If
a defect occurs within this 120-day period, simply return the defective media to Accolade Design Automation, Inc.
and Accolade Design Automation, Inc. will replace it free of charge.

Accolade Design Automation, Inc. makes no representation or warranty regarding the content of this product,
including its software and documentation. For example, Accolade Design Automation, Inc. does not warrant that the
software and documentation are “error-free” or will meet the needs and requirements of a particular user. All
information in the software and documentation is subject to change without notice. In addition, Accolade Design
Automation, Inc. makes no representation or warranty regarding products, media, software or documentation
manufactured or supplied by others.

ALL OTHER WARRANTIES, REPRESENTATIONS, CONDITIONS, EXPRESS OR IMPLIED, INCLUDING ANY
IMPLIED WARRANTY OR CONDITION OF MERCHANTIBILITY OR FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED BY ACCOLADE DESIGN AUTOMATION, INC. ALL OTHER IMPLIED TERMS ARE EXCLUDED.

Limitation of Liability

The only remedy under this limited warranty or by any additional guarantee is replacement of the defective media or
refund of the actual amount paid. Accolade Design Automation, Inc. disclaims any liability for damages arising from
the use of this product or any other damages, including (though not limited to) lost profits or data, special, inciden-

tal, or other claims, even if Accolade Design Automation, Inc. has been specifically advised of the possibility of such
claims. Regardless of the form of the claim, the only liability Accolade Design Automation, Inc. will have to you or
any other person will be limited to the amount actually paid for the product.

Miscellaneous

This license and limited warranty can only be modified in writing signed by you and an authorized officer of
Accolade Design Automation, Inc. If any part or provision is found to be unenforceable or void, the remainder shall
be valid and enforceable. If any remedy provided is determined to have failed of its essential purpose, all limitations
of liability and exclusions of damages shall remain in effect.

Use, duplication or disclosure of this software and documentation by the U.S. Government is subject to the
restricted rights applicable to commercial software (under FAR 52.227-19 and DFARS 252.227-7013). Sale of this
software is subject to the U.S. Commerce Department export restrictions. This software is intended for use in the
country in which it is sold (or the EEC if first sold in the EEC).

This license and limited warranty shall be construed under the laws of the state of Washington, U.S.A.

You have specific legal rights under this document, and may have other rights that vary from state to state, and from
country to country.

CopYRIGHT 1996-1998, AccoLApe Desien AutomaTioN, INc. All rights reserved. Accolade and Accolade PeakVHDL are
trademarks of Accolade Design Automation, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders. Portions of this product are licensed from Green Mountain Computing
Systems and are copyright 1995, Green Mountain Computing Systems. All rights reserved.

Third Edition
Printed in the U.S.A.

u0597

Acknowledgments and Copyrights

The PeakVHDL product and its accompanying documentation
have been produced by Accolade Design Automation, Inc.
Accolade Design Automation is the holder of copyright to this
work, and unauthorized duplication or use of the PeakVHDL
product or its documentation, including this manual, are
prohibited without the written permission of Accolade Design
Automation, Inc. Portions of the PeakVHDL product have
been supplied under license by Green Mountain Computing
Systems and are copyright 1995-1998, Green Mountain Com-
puting systems.

The information in this manual is subject to change without
notice and does not represent any commitment on the part of
Accolade Design Automation.

PeakVHDL, PeakFPGA, PeakEDIT, SV/OLE and Accolade
VHDL are trademarks of Accolade Design Automation, Inc.
Windows is a trademark of Microsoft Corporation. IBM and
PC are registered trademarks of International Business Ma-
chines Corporation.

Copyright 1995-1996, 1997, 1998, Accolade Design Automa-
tion, Inc. All rights reserved.

Contents

Acknowledgments and COPYIIghLScccovieiieie e iv
Chapter 1: What is PeakVHDL?ccoooviiiiiiiiieii e 1
Design Management FEATUIESccevveieiieieeie et 1
SIMUIATION FEATUIESooviiiiiie e 2
SYNTNESIS FEATUIESocviiiiciccece ettt aeenees 3
Personal Edition Feature SUMIMATIYccooveviiieieeie e 3
Professional Edition Feature SUMMANYccccooviiereeiieieene e 5
Chapter 2: Installing the Softwarecccccoeeiiiiiiiiiiiiiieeeees 9
SYSEEM REQUITEMENTSc.veiiiciie ettt sne s 9
INStalling YOUr SOFtWAKEcoviieiie e 10
RegiStering YOUr SOftWANEccoveiieii e 11
Chapter 3: Creating a Projectcooeuuviiiiieiieiiiiiie e 15
Creating @ NEW PrOJECTccvciiie ettt 16
Setting ProjeCt OPLIONSc.cocvevieeie it 16
Creating @a VHDL MOAUIEcvoiiiececeee e 18
Adding an Existing VHDL Moduleccooiiiiiiiiceece e 20
Examining the Project HIerarchycccoveveiieii e 22
Changing the Display Order of VHDL Modulescccocvvvvviiivicieieenenn, 24

Contents

SUIMIMIBTY <.ttt ettt ettt e be et e e st e e e beesneeenbeenneeas 24
Chapter 4: Using the VHDL Wizardccooovvvviiiiiiiiiiiiiee, 25
Invoking the New Module WIzard ..o 25
SPeCIfyiNg the POIT LIStccoiiiiieiie e 26
Adding Functionality to Your New Module...........cccooiviinnininniencnien, 29
Compiling the NeW MOAUIEccooiiiiiiiic e 32
Updating (Rebuilding) Your Project Hierarchycccccoociiiiiiiniiniinee 34
Using the Test BENCh WAZArd ..o s 34
Invoking the Test BeNnch WIzard ... 35
Verifying the POrt LISt ..o 36
Modifying the TeSt BENCHooiiiii 37
SUIMIMIBTY <.ttt ettt ettt e be e et e e et e e e beesneesnbeenneeas 39
Chapter 5: Using Simulationccoooevviiiiiiiiiieiii e, 41
Understanding SIMUIATION ..o 41
Loading the Sample ProjECT ..o s 42
Using the HIerarchy BrOWSENccocoiiiiiiieiiec e 43
Compiling Modules for SIMulation ... 44
Linking Modules for SImulation ... 46
Setting SIMUIAtION OPLIONSocviiiiiiiieee e 49
Loading the Simulation Executable ... 51
Selecting Signals to DISPIAY ..o 52
Changing SImulation OPLIONSccociiiiiieierie e 53
Starting a SIMuUIAtioN RUN ... 54
SUIMIMIBTY <.ttt ettt ettt e be e et e e et e e e beesneesnbeenneeas 56
Chapter 6: Using the Debug WIiNndowcevviiiiiiiiiinnnenee. 57
Understanding Source-Level Debugging.......cccocceveiiiiiiiiiinnenie e 57
A SAMPIE PIOJECT ...ttt 58
Loading the SampPIle ProjECT ..o s 60

Vi

Setting ProjeCt OPLIONSc.coviiiiiiiieeee e e 61

Loading the SIMUIAtIONccooiiiiii s 62
Setting a Break POINTcoooiiiiiic e 64
RUNNING SIMUIATION ... s 64
SUIMIMIBTY .ttt ettt bt e be e et e e et e e e beesaeeenbeenreens 66
Chapter 7: A First LOOK at VHDLcoiviiiiiiiiiiceeeecee e 67
WAL IS VHDL? ..ottt 67
A Brief HIStOry Of VHDLooiiiiieee e 69
LearniNg VHDLLc.ooiii et 73
Entities and ArchiteCtureS ..o s 74
ENtity DECIArationcccoiiiiiiie e 75
Architecture Declaration ..o 76
DAt TY S ...t 77
DESION UNITS ..ottt sttt nnes 78
Levels of ABStraction (STYIES)coceiieiiiiiiieece s 81
SAMPIE CHFCUIT .. 84
Comparator (DAtaflOW)cceoieiiiiiiie e 86
Barrel SNIfter (ENTITY) ..o.coooeeeiee s 89
Signals and Variables............ooiiiiii e 94
USING @ PrOCEAUIE ...ttt ettt 95
SEFUCTUTAl VHDLL ... 98
DeSIgN HIBTAICNY ..ot e e s 98
TESEBENCNIES ... s 100
Sample TESEBENCHooeii e 102
CONCIUSION ... ettt b e es 103
Chapter 8: Using PeakLIB...........ccooevviiiiiiiiiiiiie e, 105
PEAKLIB OVEIVIEBW ..ottt sttt 105

Vil

Examining the Contents of a Library Fileccccooiiiiinii 106

Adding a .AN File to a LIDrary ..., 106
Deleting a .AN File Reference From a Librarycccoccovviiiiiinininnnn 107
Appendix A: SUPPOIt SEIVICES......coiveevieeiiiiiie e eeeaan 109
Learning More ADOUL VHDLLcccoiiiiiiiiee e 109
Obtaining Product ASSISTANCEceiiiiiiieieeie e s 110
REPOIING BUGS ...ttt bt 110
AppeNndix B: GIOSSAIYccoccvvieiiiieeeeeeiie e ee et 113
Appendix C: Examples Gallerycccccvveiiieeiiiiiiiiiieeeeei, 127
Using Type Conversion FUNCLIONS ..o 128
USING COMPONENTS ..ottt sttt 132
Using Generate StatemMeNntscoooeiieiieesiee e 136
Understanding Sequential Signal Assignmentscccocvvevveneiieneeenn 139
Describing A State Machineg ... 144
Reading And Writing From FileS ..o 150
Appendix D: SV/OLE Reference......ccccccoovvevviiiiiiiiicceceiiie, 157
SV/OLE Operation OVEIVIBWccooiiiiiiiniieie et 158
FUNCTION SVOLE.ATGS() «voveereeieieriesiesiesiesesieeeeiesie e sie e ssesseeeeee e, 160
FUNCTION SVOLE.AtOMTONAME() .evveiveeiiiieiiieiesiiesieesie e 161
FUNCTION SVOLE.CUITENIBP() ..veevveieieiiesie e 162
FUNCTION SVOLE.DEIEtEBP()cveiiieriesiicieciesieieie e, 163
FUNCTION SVOLE.DeltaStep() ..oocooervrerrieinieieiesiese e sie st 164
FUNCTION SVOLE.EXIT() ..vveveieieiieiesesie s 165
FUNCTION SVOLE.GELASSEItION() .ocoveeveeieeiiiiie it 166
FUNCTION SVOLE.GEtLASEITOI() ...ccoveiveeieaiiiierieeie e sie e 167
FUNCTION SVOLE.GEMESSAJE() «.vveverreerreeiiiiesiieiesieesieesie s siesee e 167
FUNCTION SVOLE.GEtOULPUL() «.vovveveriesiieiisiieieieie e 168
FUNCTION SVOLE.GEtSIMHIST() ..ovevvevieieiiiiiieieieerese e 169
FUNCTION SVOLE.GetTranSCriptTeXt() ..ccceeveereerierieneeiie e sieesie e 170
FUNCTION SVOLE.GELUSEITYPES() -veveeeeereerieeriieiesieesiesieseesieeseessesssesnens 172

viii

FUNCTION SVOLE.GetVariables()ccoovrieniiiiiieeneeeccee e, 173

FUNCTION SVOLE.GEtVAIrTYPE() .o cveerveeeerieeiiaiesieesiesee st sie s siee e 174
FUNCTION SVOLE.NamMeTOATOM() ..c.veiveeieieiiiie it 175
FUNCTION SVOLE.QUEIYDONE() ..evveeeivieiieeiisiie it 176
FUNCTION SVOLE.QueryPercentDONE()cccververerrieerienieiieie e 177
FUNCTION SVOLE.QUENYSTALUS() .. .veverveeieieiiriie i 177
FUNCTION SVOLE.RESEL() .eovveiveeiieiieiiierieeie et 179
FUNCTION SVOLE.RUN() «vviitieiiieie e 180
FUNCTION SVOLE.RUNFOIEVEI() ..ccveeiiiiiiiiieii et 180
FUNCTION SVOLE.SEtBP()veeitiiieiiieieeiesiieie et 181
FUNCTION SVOLE.SEtINPUL() ...eeiieiieieiiesiieiceie e 182
FUNCTION SVOLE.SINGIESTEP() «vvveveeieeiieniieiiieie st 183
FUNCTION SVOLE.SEArt() ...cocveeeeieriiesieeiesiesi e 185
FUNCTION SVOLE.STOP() «-veevverreeiininsiiesieeie e sie et 185
FUNCTION SVOLE.TIMENOW() ..cvveitieieeiieiiieiiieie e 187
PROPERTY SVOLE.TIMESIEP ...ccveiiiiiieiiieiieeie ettt 187
PROPERTY SVOLE.TIMEUNILSoceeiiiiiiiieiece e 188
Simulation History (SimHist) Interfaceccccooeiiiiiinieeec e 189
FUNCTION SImHIist AAdWatCh()cocovviiiiiiiiiiiee e 190
FUNCTION SIMHISt.CIearAll()ccoooveeiieeeeeceee e 191
FUNCTION SImHISt.ClearEVENTS()covvvereeiiiie e 192
FUNCTION SIimHIist.DeleteEVENTS() ...cccveveeiiiieiieie e 193
FUNCTION SimHist.DeleteWatch()ccooeiiiiiiiiieniee e, 194
FUNCTION SIMHISt.GEtEVENTS() ..oovveveiiieiiieii et 195
FUNCTION SImHIist.GetValUBAL()coveeiiiiiiiecece e 196
FUNCTION SimHist.GetWatChes()ccoovrieiiiiiieecee e, 197
FUNCTION SIMHISE.TIMENOW() ...vcoiiiiiiiiiiesieieeie e 198
PROPERTY SIMHISE.TIMEUNITS ..o 199
Event Iterator (EVENTITErator).cccooiiieiiiiceee e 200
FUNCTION Eventlterator.Current()coceeeeveereneeneenenie e eee e seesnens 200
FUNCTION Eventliterator.First().......ccoooeeiiieniiie e 201
FUNCTION Eventlterator.GEtASSIING()cvvvverveeieiieienie e 202
FUNCTION EventlteratorISEMPLY()ccooceeriiieiieiiniesiee e 205
FUNCTION Eventlterator.IsFirst() return Booleanccccoeovvnrnnnnnne 205
FUNCTION Eventlterator.ISLast()ccovereeriiiniieie e 206

FUNCTION Eventlterator.Last()ccooerereeiiiie e 207

FUNCTION Eventlterator.NeXt()ccoceevereeriiie e 208
FUNCTION Eventlterator.PrevVious()cccoceereriniieiienieneee e 209
FUNCTION Eventlterator.RESET()ccoverirrieiiiie e 209
Event ODJECt (EVENL). ...cc.ooiiieeei e 210
FUNCTION EVENE.TIME() cveivviiiieiiiie e 210
FUNCTION EVENt.VAIUE() ..ceveiieiiee e 211

Chapter 1: What is PeakVHDL?

PeakVHDL™ is a design entry and simulation system that is
intended to help you learn and use the VHDL language for
advanced circuit design projects. The system includes a VHDL
simulator, source code editor, hierarchy browser and on-line
resources for VHDL users. If you have purchased a synthesis
option, PeakVHDL allows you to control synthesis options
and start the synthesis process from right within the
PeakVHDL environment.

You can use PeakVHDL to create and manage new or existing
VHDL projects. Because VHDL is a standard language, you
can use PeakVHDL in combination with other tools (including
schematic editors, high-level design tools, and other tools
available from third parties) to form a complete electronic
design environment.

Design Management Features

PeakVHDL includes many useful features that help you to
create, modify and process your VHDL projects. The Hierar-
chy Browser, for example, shows you an up-to-date view of
the structure of your design as you are entering it. This is

Chapter 1: What is PeakVHDL?

particularly useful for projects that involve multiple VHDL
source files (called modules) and/or multiple levels of hierar-
chy.

The VHDL Wizards helps you create new VHDL design
descriptions, by asking you a series of questions about your
design requirements, and generating VHDL source file tem-
plates for you based on those requirements.

The built-in dependency (‘make’) features help you streamline
the processing of your design for simulation and for synthesis.
When you are ready to simulate your design, for example, you
simply highlight the design unit (whether a source file mod-
ule, entity, architecture, etc.) you wish to have processed and
click a single button. There is no need to compile each VHDL
source file in the design, or to keep track of your source file
dependencies. PeakVVHDL does it for you.

Simulation Features

PeakVHDL’s built-in simulator is a complete system for the
compilation and execution of VHDL design descriptions. The
simulator includes a VHDL analyzer (compiler), elaborator,
code generator and simulation kernel. VHDL design descrip-
tions are compiled into a 32-bit native Windows executable
form. When run, these executable files interact with the
PeakVHDL system to allow interactive debugging of your
circuit.

The PeakVHDL analyzer, elaborator, code generator and
simulation kernel are native 32-bit Windows applications;
meaning that they are fast and capable of processing very
large design descriptions.

Simulation results (in the form of graphical waveforms and/
or textual output) can be easily saved for use in other tools, or
printed on any Windows-compatible printer.

Professional Edition Feature Summary

Synthesis Features

PeakVHDL’s optional synthesis packages allow design
descriptions to be quickly and easily processed into netlists
optimized for specific target hardware, such as FPGA devices.
Synthesis options are controlled from within PeakVHDL'’s
Options dialog box. The PeakVHDL Hierarchy Browser is
used to invoke synthesis, allowing complete control over the
synthesis process.

Personal Edition Feature Summary

The following features have been provided in PeakVHDL
Personal Edition, and are also available in more advanced
versions of PeakVHDL:

Hierarchy Browser

The Hierarchy Browser provides you with one centralized
place to control the processing of your design, invoke the
built-in editor to modify your design, and see how the vari-
ous modules of your design are related. In addition, the
Hierarchy Browser acts as a dependency checking feature,
ensuring that the files associated with your project are pro-
cessed in the correct order and kept up-to-date as you make
modifications to them.

Source File Editor

The built-in editor allows you to quickly create and edit
VHDL source files and other ASCII text files associated with
your project. The editor includes useful features such as
syntax coloring, automatic indenting, and global (multi-file)
search capabilities.

Chapter 1: What is PeakVHDL?

VHDL Wizards

The VHDL Wizards help you to quickly create new VHDL
modules and add them to your project. The Wizards allow you
to enter the top-level specification of a design module (in the
form of a port list) and automatically generates a VHDL
source file template and template test bench.

VHDL Compiler and Linker

The PeakVHDL is a native-compile simulator that processes
(compiles) VHDL design descriptions into Windows-compat-
ible native x86 bject code. The VHDL compiler included with
PeakVHDL Personal Edition provies support for most features
of the VHDL language. (Limitations are described on the
Accolade Design Automation Web site.)

The object code generated by the compiler is linked automati-
cally to create a simulation executable compatible with
PeakVHDL’s SVOLE execution kernel. The PeakSIM simula-
tion interface (see below) provides you with a graphical view
of simulation results and allows you to select signals and
control simulation execution.

PeakSIM Waveform Interface

The PeakSIM waveform display provides you with a graphical
representation of your simulation results in a format similar to
a logic analyzer. VHDL data types (including user-defined
types) are dispayed in an easy-to-view format, and the inter-
face allows you to select and order signals in the display at
any time during simulation. Selectable measurement cursors
make it easy to compare and measure waveform events, and a
transcript window makes it easy to observe messages (such as
text 1/0) generated from your design as it executes.

Sample Projects

PeakVHDL Personal Edition includes dozens of sample VHDL
projects to help you come up-to-speed quickly with the lan-
guage and its important concepts. These projects may be
copied and modified as needed as you develop your own
VHDL-based projects.

Professional Edition Feature Summary

The following features have been provided in PeakVHDL
Professional Edition, in addition to those features provided in
PeakVHDL Personal Edition:

High-performance VHDL Analyzer and Elaborator

The Professional Edition simulator includes advanced VHDL
compiler technology with faster performance and greater
design capacities than are available in the Personal Edition
product. The Professional Edition x86 code generator is opti-
mized for today’s high-performance x86-based processors.

Debugging Window

The source-level debugging window allows you to follow the
execution of your VHDL design at the level of VHDL source
file statements. This is particularly useful for debugging
complex sequential statements, determining the order in
which statements are processed, and understanding the
impact of scheduling, delta cycles and other complex aspects
of model execution.

Break Points

An important feature of the source level debugging window is
the ability to set break points in your VHDL code. Break
points are points at which the simulation will pause execution,
making it easier for you to step through the code to analyze its
execution and find errors.

VITAL (IEEE 1076.4) Support

When purchased with the PRO+VITAL option, the Profes-
sional Edition simulator product supports timing annotation
using VITAL (IEEE 1076.4) compliant netlists and SDF timing
data files. This feature is important for performing post-route
timing simulation of FPGAs and other devices.

Command Window

The command window allows you to enter text commands, or
control the execution of command files, from within the
PeakSIM simulation interface. The commands available in this
window give you more complete control over the simulation
process, including the ability to force individual signals to
specific values during debugging.

SV/OLE Programming Interface

The SV/OLE programming interface makes it possible for you
to run your compiled and linked PeakVHDL projects as stand-
alone Windows applications, and to interface the resulting
simulation executable files directly to OLE-enabled program-
ming environments such Visual Basic and Visual C++. This
feature gives you tremendous power by allowing a form of
hardware/software co-simulation. To help you get started
with this powerful feature, a comprehensive on-line SV/OLE
reference guide and a sample Visual Basic application are
included with your PeakVHDL Professional Edition installa-
tion.

PeakLIB

The PeakLIB program supplied with PeakVHDL Professional
Edition can be used to create and maintain PeakVHDL library
files from your previously-compiled VHDL object files.
PeakLIB is a DOS application, and is described in detail later
in this manual.

PeakFPGA Integration

PeakVHDL Professional Edition is designed to integrate
tightly with PeakFPGA™ for the best in FPGA synthesis.
PeakFPGA is a full featured FPGA Synthesis tool that supports
all major FPGA device families.

Chapter 2: Installing the Software

The PeakVHDL software follows established Windows soft-
ware installation methods. The instructions in this chapter
assume you will be installing the software from CD-ROM. The
installation procedure for diskette distribution is similar, and
is not described here.

After installing the software, but before making full use of it,
you will need to register the software using a valid serial
number and permanent authorization code. Follow the in-
structions in this chapter carefully to make sure you have
correctly installed and registered the software.

System Requirements

The PeakVHDL software will install and run on any Microsoft
Windows based personal computer meeting the following
criteria:

B Windows 95/98 or Windows NT operating system.
B Intel (or equivalent) 486 or Pentium processor.

B 16MB (or greater) RAM.
|

17MB of available disk space (65MB with all libraries and
options).

Chapter 2: Installing the Software

Installing Your Software

10

The PeakVHDL software is supplied on CD-ROM. Installation
of the software is simple, and follows standard Windows
installation methods.

Begin the installation by inserting the distribution CD-ROM
into your CD-ROM drive unit. From My Computer or Ex-
plorer, invoke the setup utility (SETUP.EXE) found on the
distribution CD-ROM.

Note: When installing, do not choose a directory that includes spaces in the
path. An example of this is C:\Program Files\.

Selecting Product Options

When you begin installation, the installation software will
prompt you for an installation directory and allow you to
select the product features you wish to install (Figure 2-1).
Choose Typical to install all files (including synthesis options)
to your hard disk, or choose Compact to install only the
minimum files needed for simulation. Choose Custom to
remove certain product features (such as on-line manuals)
from the installation if disk space is at a premium.

After installing the software on your hard disk drive, the
program will create (or update) the appropriate entires in your
Windows Registry, and will create a Start menu program
group and items as appropriate. You then have the option to
invoke PeakVHDL immediately, or you can exit the install
routines and run PeakVHDL at a later time.

Note:

The PeakVVHDL software does not require any modifications to your system
files (such as AUTOEXEC.BAT or CONFIG.SYS).

Installing Your Software

Figure 2-1: Select
Typical, Compact or
Custom to install the
PeakVVHDL Software.

ok thae tppes ol Bt i predew, Bety plob, Rhsad,

v Ty Faagrn vall bes nelabsd el s ol oorereon
aptere. Facorsrsandsd bor el L1ews

™ Corpac] Pragranivell banolaled rah rararo regussd
D

7 Cigtean Vourmey choar tha aphonz pog meand ba rotald
Fesomrwmandad by Slveas] s

Daztradion [esctoey

© ‘wcc-adal Eyoevea. |

Bk | meds | coe |

Registering Your Software

Before beginning with PeakVVHDL, you should take a moment
to register the product. Although the product can be used with
the Temporary Authorization Code (which has been provided
for you with the software distribution), this Temporary Autho-
rization Code will expire in as few as thirty days after you
receive the software.

1. Determine Your Node 1D

Before registering your software, you will need to determine
the Node ID of your computer system. To determine the Node
ID of your system, invoke the Display Node ID application
that was installed with Peak\VHDL in the Programs /
PeakVHDL section of the Windows Start menu.

The Node ID is generated for your system based on certain
hardware and software characteristics. There are some system
upgrade or replacement situations in which your Node ID will
change. If this occurs, simply contact Accolade Design Auto-
mation product support to obtain a new authorization code.

11

Chapter 2: Installing the Software

12

2. Obtain a Permanent Authorization Code

To permanently enable the software, you must obtain a
Permanent Authorization Code from Accolade Design
Automation, using the automated registration system found
at the following URL: http://www.acc-eda.com.

Note:

If you do not have access to the World Wide Web, or are having problems
accessing the automated registration system, you can obtain your
authorization code direct from Accolade Design Automation. Refer to
your printed distribution materials for the appropriate FAX or voice
phone number. Site License users must contact Accolade Design Auto-
mation directly for a Site License Authorization Code.

When registering your software with the automated regis-
tration system, be sure to enter your name and serial
number(s) correctly and completely. Your Permanent Autho-
rization Code is tied directly to your Node ID (or site license
name), and cannot be used by others. Also be sure to com-
plete the user information section, including your complete
phone number and address.

3. Enter the Authorization Code in the Software

After you have received your Personal Authorization Code,
or to use temporary Authorization Code, enter the informa-
tion into the Options dialog box, in the Registration tag as
shown in Figure 2-2.

(You access the registration dialog by selecting the Register
item from the PeakVVHDL main application window:.)

Enter your name, product Serial Number(s) and Personal
Authorization Code in the appropriate fields. Check to
make sure they are entered correctly. If you have purchased
multiple product options (such as PeakVHDL simulation
and PeakFPGA synthesis), enter all associated serial num-
bers in the Serial Number(s) field, using commas between
the serial numbers as shown.

Registering Your Software

Click on the Click Here to Register button to verify the

authorization code and enable the product, then click the OK
button to exit the registration dialog.

Your PeakVHDL software is now ready for use.

Figure 2-2: Enter your
name, serial number(s)

Thu Corpla | Link | Sredatn | Syribioe | Spien Ragainion |

and authorization code . |

to enable your software. R P ——— E
oo TanEE ArcFREaER [1:=m0m |
Moda D Sdwlbcammmnams I Fiagintaruring 3 L —
JFUCHY

17 Fusgieber uiing b I freods lockiedd bosrse]

[Chick: b 12 segiter yous s |

zaf e baiven Long i Cassfully chach th o yoan Sl Mursbarfy] snd
okireg v egiied bultng, PRt ot thed Savied s wast b prisved in

Fyouda rod pet hrsa & persranl aibaeston coda, voumey anta por erpoaep sulhoaeston code snd
il ek i e Bppacp ks bk

13

14

Chapter 3: Creating a Project

PeakVHDL operates on one or more VHDL source files that
are referenced in a PeakVHDL project file. This chapter will
describe how to create and use PeakVHDL projects, and how
to create or import VHDL source files into a PeakVHDL
project.

A PeakVHDL project is composed of a project file and one or
more VHDL source files, which are refered to as modules. The
project file, in addition to containing references to the various
VHDL modules in your project, also includes various option
settings that you have specified for the project. Each module
(VHDL source file) includes one or more VHDL design units
that can be selected as needed when the design is processed.

Project files (which are created with a .ACC file name exten-
sion when you select Save Project from the File menu) in-
clude information about the VHDL modules used in the
design, as well as the project-specific options that you have
specified. Project files do not include the actual VHDL source
statements for your design; instead, the VHDL source state-
ments are maintained in separate VHDL source files, which
normally have .VHD file name extensions.

15

Chapter 3: Creating a Project

Note

PeakVVHDL allows you to use alternative file name extensions, such as
.VHDL or VHO, but the built-in text editor will only recognize files with a
.VHD file name extension for the purpose of VHDL syntax coloring.

Creating a New Project

This and the following sections will take you step-by-step
through the creation of a new PeakVVHDL project, beginning
with the creation of a blank project. First invoke the
PeakVHDL application then, to create a hew project:

1. Select New Project from the File menu, or click on the
New Project icon.

A blank project will be created, and the Hierarchy Browser
will appear . The Hierarchy Browser will contain references to
each new VHDL module as it is added or created. Before
continuing, it is a good idea to establish a working directory
and project name by saving the project file. To save the project
and give it a name:

2. Select Save Project As from the File menu, or click on the
Save Project icon in the PeakVHDL toolbar in Figure 3-1.

After saving your project with a name, you are ready to begin
creating or importing VHDL source file modules.

First, however, you may want to set a few project options.

Setting Project Options

16

PeakVHDL includes a variety of program options that you
can specify. Some options available in PeakVHDL (such as
compile flags and library paths) are related to specific
projects, while others (such as the text editor font and toolbar
settings) are more general and system-wide. As you learn and

Setting Project Options

g Aocolade Poak i
Fie Ef Wesa Gwadsks Spthesite Dpee windes Hep Reguks!

Alsgfalg22E &l 8L 6] o)

Figure 3-1: A blank
project is created, and

an empty Hierarchy
Browser window
appears v vim] ol

| | | | &

use PeakVHDL’s many features, you will find it useful to
customize the options settings for your own preferences,
and for the requirements of your projects.

To set PeakVVHDL options:

1. Open the Options dialog (Figure 3-2), either by selecting
any item from the Options menu, or by clicking on the
Options icon in the PeakVHDL toolbar.

2. Use the tabbed dialog feature to select the desired option
tab.

The Options dialog allows you to set a variety of options
related to compilation, linking, simulation, synthesis and
general program operation. (The options available to you
will depend on the specific product version that you have
purchased. For detailed information about available options,
please consult the PeakVHDL on-line help information.)

17

Chapter 3: Creating a Project

Figure 3-2:
PeakVVHDL Options
dialog allows you to set

a variety of project n:.;::: - n;m; e [
options related to G
simulation and e e i

synthesis. PeakVHDL (i pliarrr fou calsciuci readula

also includes system Sk nodle e Cimps ink3 bayp Estzand [us'] e

options so you can | | @

customize the

appearance and features Voo rmpubs s S0y oy [0 ki poanpaion, || g chooes ndd by ues EEEE bl 1076-1560
FAHOL 37 pos ruct shio changa ha Suctern Libree Path uncen tha Sytarn hab

of your PeakVHDL
installation.

| e | |

Most options that you specify in the Options dialog are saved
with your project, so you can tailor the options to the require-
ments of a specific project. If you wish to save the options
specified as the default options for all new projects, you can
check the Save options as default option before exiting the
PeakVHDL application.

When you have finished setting (or simply examining) the
Options dialog:

3. Click OK to exit the dialog and save your new option
settings, or click Cancel to exit the dialog without saving
the new settings.

Creating a VHDL Module

There are two ways to add VHDL modules to your project,
depending on whether you are building a project from exist-
ing VHDL source files or are creating a new project from
scratch.

18

Figure 3-3: Use the
New Module button to
create a new VHDL
module (source file).

You can create an empty
module, or invoke the
Module Wizard or Test
Bench Wizard to create
a module or test bench
template.

Creating a VHDL Module

If you do not already have one or more VHDL source files to
work with, you will begin by creating a new, blank VHDL
module. To create a new VHDL module:

1. Select New Module from the File menu, or click on the
New Module icon. The New Module dialog will appear as
shown in Figure 3-3.

Note

If you have not already saved your new project, you will be prompted to
save it before the New Module dialog appears.

Hew Module | x|

W &dd new module to project

Module YWizard |

Test Bench “Wizard |

Create Blank Module | Cancel |

The New Module dialog box has three buttons that allow you
to create new modules. The Module Wizard and Test Bench
Wizard buttons invoke the VHDL Wizard, which is described
in detail in Chapter 4. The Create Blank Module button adds
a new, empty module to your project.

2. Click the Create Blank Module button to create a new,
empty VHDL module.

Note

By default, the New Module dialog will add the new module to your project
so it is displayed in the Hierarchy Browser. If you do not wish to have the
module added to the Hierarchy Browser, you should deselect the Add new
module to project field in the New Module dialog.

19

Chapter 3: Creating a Project

At this point, you could add some VHDL source statements to
the empty module and save it (using Save Module As from
the File menu). To continue this tutorial, however, you must
delete the newly-created VHDL module and go on to the next
section.

3. Delete the newly-created module by first closing the text
editing window, then highlighting the module name in
the Hierarchy Browser and selecting Remove Module
from the File menu.

Note

Removing a module from the Hierarchy Browser does not remove the file
from your hard disk. Remove Module only removes the reference to the
specified file from the project file.

Adding an Existing VHDL Module

20

To import already-existing VHDL source files (created outside
of PeakVHDL) into your project, or to copy and use a module
(such as a test bench) from one of the PeakVHDL standard
examples, use the Add Module feature instead of New
Module. The Add Module feature, which is accessed by
selecting Add Module from the File menu, or by clicking the
Add Module icon, adds one or more VHDL source file to the
Hierarchy Browser display, and to the project. To understand
how this works, use the Add Module feature to import all the
VHDL source file modules from one of the PeakVHDL stan-
dard examples:

1. Click the Add Module button (or select Add Module
from the File menu).

2. Navigate to the PeakVHDL examples directory (typically
“N\acc-edab\examples”) and select one of the PeakVHDL
example directories (for example, “examples\shifter”, as
shown in Figure 3-4).

Figure 3-4: To add one
or more existing VHDL
modules to the project,
select the Add Module
button. If the module is
not in the current
project directory, it will
be copied.

Adding an Existing VHDL Module

Lokke | =sm

g cachashd
iboaohes vhd

Fiepwer |
Files o e [Finz [vh]

| Corm promed Ha | I | &

3. Highlight (using the shift key and mouse) all .VHD files
listed.

4. Click the Open button to add all selected .VHD files to
your project.

When you import modules using Add Module, if the selected
VHDL source files are not in the current project directory, they
will be copied to the current directory before being added to
the project.

Note

It is not possible to create projects that directly reference VHDL files
located in other directories. You can, however, use the library features of
PeakVVHDL to create precompiled modules in different directories on your
system. Refer to Chapter 8, Using PeakL IB, for more details on
PeakVVHDL s library features.

21

Chapter 3: Creating a Project

Examining the Project Hierarchy

Figure 3-5: Use the
Rebuild Hierarchy
button to bring the
Hierarchy Browser up-
to-date. You should
rebuild the project
hierarchy after any
change to a module that
might impact the project
hierarchy.

22

When you have created or imported one or more VHDL
modaules for your project, you can easily examine the hierar-
chy of each module and the see the relationships between
design units found within those modules. To examine the
hierarchy of the project:

1. Make the Hierarchy Browser the active window (by
clicking the mouse once within it, or on its title bar).

2. Select Rebuild Hierarchy from the File menu or use the
Rebuild Hierarchy button.

When Rebuild Hierarchy is invoked, all modules in the
project are analyzed and a hierarchy tree is created. After the
tree is created, you will see small “+” icons appearing next to
each VHDL module (Figure 3-5). You can use these “+” icons
to push into each module and examine its contents, or you
can use the Show Hierarchy button (shown below) to expand
and view the entire project hierarchy:

e

When you examine the complete hierarchy for a module
(either by repeatedly clicking on the “+” icons or by clicking
once on the Show Hierarchy icon), you will see listed not
only the design units that exist in the current module, but
those that exist in other modules referenced from the current

Fall T COas_ S50

i % v m| A |

T WODLLE SLLTEET WHD

g HODLLE FOTTEET WHD
g HODLLE COMFTEET WHD
- HODLLE FaOT DOk PHD

Figure 3-6: After you
select the Rebuild
Hierarchy feature, the
Hierarchy Browser
displays the hierarchy
for each module in the
project. You can invoke
the text editor by
double-clicking on any
entry in the Hierarchy
Browser.

Examining the Project Hierarchy

Jl.brlr:r dawa) wre dawwored_Llesgis L1984, mlls
wrn wark_wlly

E ﬂ HODULE SLLTERTVHD
=-[@ EMTITY TESTALL BLLTEST ¥HO|
E- [AACHTECTURE BEHENIOR BLLTE ST VHE
= [COMPORENT DUT BLLTEGT WHD|
[EHTITY FOTCOMP FOTCOMP VD
E-[@ WODULE AOTTESTAVHD
= [@ EMTITY TESTROT JFOTTERT WHO|
= [AACHTECTLRE BEHEVIOR FOTTEET W
<-[@ COWPORENT DUT T TEST SHIO|
B ENTITYFOTATE [FOT COMPVHE]
B[WODULE COMPTES T VD
=-[@ EMTITY TEGTOOMP COMFTE ST YHD)|
E- [AACHTECTURE TEETLOMF] COMFTEST
=[] COMPORENT DUT COMFTEST YHD|
[EHTITY COMFSFE [ROTCOMPYHE
B[MODULE ROTCOMRYHD
=-[@ EMTITY COMPARE JFOTCOMPVHE]
[ARCHTECTURE COMPARET JF0T COMPY
- [@ EMTITY ANTATE [ROTCOWEYHD|
[E ARCHTECTURE AOTATED [RNTCOMEYHI
= [@ EMTITY ANTCOMP[RDTCOMEYHO]
E- [AACHTECTURE STAUCTURE FOTOOMP. =

&
e e e

antity wertren iy
and tashicats

s oo ccura bahwvioe o oertron il

CaEpCOAnt Cotata

poctil Clk, Pab, Lasd- in wid_ulogicr
Peta: yod_ulegiz_wrectacil ta T
0: il ped_ulogic_wachier 1] b Tl)r

snd componant s

signel Clk.Pat, homd: »éd_ulagice

rimel Deos: red_ulagic_wacher |0 os Tl

signel 3= sbd_mleogic_wwctaril ta P

canrtars FERIOR: bimm = 50 o

modaule as well. If you wish to examine the VHDL source file
associated with any design unit listed in a module’s hierarchy
tree, you can double-click on the design unit name and the
source file will be loaded into PeakVHDL's built-in source file
editor. This editor (shown in Figure 3-6) is a full-featured text
editor and includes features such as search and replace,
keyword coloring, and drag-and-drop editing features.

Note

If you prefer to use your own text editor, you can specify an alternate
sourece file editor in the System Options dialog box.

Although you can edit and compile VHDL modules without
first rebuilding the project hierarchy, you will not be able to
link or load a module for simulation, or invoke synthesis or
optimization without first bringing the project hierarchy up-
to-date. In addition, you should keep in mind that the project
hierarchy is not updated automatically as you modify your
project. You should therefore be sure to rebuild the hierarchy

23

Chapter 3: Creating a Project

any time you make a change to the project that might impact
the hierarchy of the project. Changes that can impact the
hierarchy include:

B Adding or removing VHDL modules
Changing compile library names
Adding or removing component references

Changing entity, architecture or component names

Modifying references to external packages

Changing the Display Order of VHDL Modules

Summary

As you add new modules to your project, you may wish to
change the order in which the modules are displayed in the
Hierarchy Browser. By default, PeakVHDL adds new modules
to the bottom of the Hierarchy Browser list. The order in
which modules appear in the Hierarchy Browser is not
significant in terms of the order of compilation, but you may
want to establish a consistent standard so that you can more
easily navigate in and manage your projects. For example,
you may wish to place modules that are test benches at the
top of the Hierarchy Browser, and maintain lower-level
modules in a lower position in the list.

To move an existing module to a new position in the list,
simply select that module by clicking once with the mouse,
then select either Move Module Up or Move Module Down
from the File menu.

24

This chapter has provided a quick introduction to the design
management features of PeakVHDL. Subsequent chapters
will show how you can quickly create new VHDL source
modules using the Wizard features, and how you can simu-
late and debug your PeakVHDL projects.

Chapter 4: Using the VHDL Wizard

The VHDL Wizard is a PeakVHDL feature that allows you to
guickly and easily create new VHDL modules and test
benches. The VHDL Wizard prompts you to enter a list of
ports (input and output signals) describing the interface to
your new design module, and from that list of ports automati-
cally generates a template module or test bench.

After the template module or test bench has been created, you
can modify it to add the desired functionality and/or test
stimulus.

Chapter 4 is a step-by-step tutorial designed to show you how
the PeakVHDL Wizards can make the creation of new design
modaules fast and easy.

Before beginning this tutorial, you should create a new, empty
project as described in Chapter 3.

Invoking the New Module Wizard

To create a new VHDL module using the VHDL Wizard:

25

Chapter 4: Using the VHDL Wizard

Figure 4-1: Click the
Module Wizard button
to invoke the New
Module Wizard.

1. Select the New Module from the File menu, or click on the
New Module icon.

2. When the New Module dialog appears, click on the Mod-
ule Wizard button as shown in Figure 4-1.

New Module x|

W &dd new module to project

Fodule wizard |

Test Bench YWizard |

Create Blank Module | Cancel

Specifying the Port List

26

The Module Wizard generates a template VHDL source file
based on the 170 specification (the port list) that you provide.
Entering your 170 is easy: just enter the port names, one at a
time, along with their direction (or mode, in VHDL jargon) and
type. The Module Wizard helps you by providing commonly-
used modes and types in drop-down selection lists, and by
checking to make sure the names that you enter are valid
VHDL identifiers.

For this tutorial example, we will create a simple shift register
that accepts 8-bit data, and shifts (rotates) this data one bit
position on the next rising edge of the clock. To describe the
top-level entity and interface to this sample design in the
Module Wizard:

1. Enter the name of the new module (its VHDL entity name)
in the Entity Name field.

2. Enter the name of the new module’s architecture in the
Architecture Name field, or simply leave the field with its
default value (architecture name behavior).

Figure 4-2: Use the
Module Wizard to
quickly describe the
interface to your new
module. Each port of the
module is entered with a
name, direction and
type. You can edit the
port list at any time
before clicking the
Create button.

Specifying the Port List

Eriies ruwes

hh' ' Uza EEE 1154 chancled opc
m
e &

e

Powrl rasnd o
r.lllt_ul ||;-i

T
El| [k _vackaini =) Sedd Pt |
Poil el
CR k] ko LJ

Feamt mn 2d_kbpx

Craim W i bd gl sl ol T cipaninn (0L
Shit e e

Crgim_ odil gl e _bonged wsatndl T dorania]

* o

mmmmmmm:mummd'm i Vion el b b 1
ol Hasa dechastere ol arg i sriarg Ha pal rkaradan, cick Cresda [—— |
_ e |

e b dthesznbde reodubs 04 ke berdh Rangdas

3. Use the Port Name, Mode and Type fields to add port
declarations for each of the inputs shown in Figure 4-2. Be
sure to select the correct mode (in or out) for each port as
shown. Click the Add Port button to add each port to the
port declarations list.

As you enter the ports, you can make changes to them at any
time by clicking in the Port declarations edit window. For
example, you will probably want to edit ports that are array
types to give them valid ranges as shown.

When modifying items within the Port Declarations window,

keep the following rules in mind:

B Each entry in the port list, with the exception of the last
entry, must be terminated by a semicolon;

B There must be only one entry (port identifier) on each line;
do not attempt to combine multiple port names on a single
line.

27

Chapter 4: Using the VHDL Wizard

Figure 4-3 When you
click the Create button
in the Module Wizard
dialog, PeakVHDL
creates a new template
module for you, and
adds the new module to
your project. You can
begin editing your new
module immediately.

28

B If you make use of IEEE standard logic data types (includ-
ing std_logic, std_ulogic, std_logic_vector and
std_ulogic_vector), you must make sure the Use IEEE
standard logic check box is selected.

After you have entered all the ports for your design (and have
verified that they have the desired modes and types), you are
ready to create the new module and save it to a file. To do this:

4. Click the Create button in the Module Wizard dialog.

When you click Create, the Module Wizard prompts you for a
file name (typically a .VHD file):

5. Enter a file name (such as SHIFTER.VHD) or accept the
default file name.

PeakVHDL will save your new module to the specified file
and add a reference to the file to your project as shown in
Figure 4-3.

n-p-muuu watula u-pl.uu: SHLFTER

== Nehw: comsantr bginning with W13 slteuld b1 L
- Other comsants sre informstionml coly

== TeakVHOL softwars verrien: 5. 0Cb

librmry imeas

urn iwws.wtd_Logic_L194. slls

== urs ivaw.reeAcic_god.sllre == Bota: wmnooss
== TIEQ rtardar

== uyya iww.yd_lopic_krich.sllr == Bota: wncoss
- Eyropeye rig

antity SHLFTER iz
pact ©
== WII DEGINFIRTE IPeskVHUL Entity Wizmrd oo
Clk: in sod_logice

== HE

Adding Functionality to Your New Module

Adding Functionality to Your New Module

After PeakVHDL’s Module Wizard has created your new
module, you will need to edit the module to add the appropri-
ate functionality. While PeakVHDL can’t read your mind to
know what the intended function of your new module is, it
does make the process easier by generating sample code, and
by inserting comments to help guide you as you modify your
VHDL code.

Because most new VHDL modules you create will include at
least one registered element, the Module Wizard inserts
sample VHDL code and comments showing you how to write
a synthesizable register element, with a suggested
(synthesizable) style for describing the clock and reset logic.
To give you an example, the following VHDL source code was
generated by the Module Wizard from the port specifications
described in the previous section:

-- Auto-generated module template: SHIFTER

-- Note: comments beginning with WIZ should be left intact.
- Other comments are informational only.

library ieee;

use ieee.std_logic_1164.all;

-- use ieee.numeric_std.all;

-- use ieee.std_logic_arith.all;

entity SHIFTER is

port (

-- WIZ BEGINPORTS (PeakVHDL Entity Wizard command)
Clk: in std_logic;
Reset: in std_logic;
Data_in: in std_logic_vector(7 downto 0);
Shift: in std_logic;
Data_out: out std_logic_vector(7 downto 0)

-- WIZ ENDPORTS (PeakVHDL Entity Wizard command)

);

end SHIFTER;

29

Chapter 4: Using the VHDL Wizard

30

architecture BEHAVIOR of SHIFTER is

-- Note: signals, components and other objects may be
-- declared here if needed.

begin

-- Sample clocked process (synthesizable) for use in
-- registered designs.
-- Note: replace _RESET_ and _CLOCK_ with your reset
-- and clock
-- names as appropriate. (Delete this process if the design
-- is not registered.)
P1: process (_RESET_, CLOCK_)
-- Note: variables may be declared here if needed.
begin
if RESET_ ='1"then
-- Registers are reset here. Be sure you include
-- reset values for all signals that are assigned
-- logic in the process.
elsif rising_edge(_CLOCK_) then
-- Note: registered assignments go here. Remember
-- that signal assignments do not take effect until the
--process completes.
end if ;
end process P1;

-- Note: concurrent statements (including concurrent assignments

-- and component instantiations) go here.

end BEHAVIOR;

This template source code can be quickly and easily modified
to described the desired function (a shifter). The exact changes

needed for this template source code are:

1. The template’s “dummy” clock and reset signals
(_CLOCK_and _RESET) must be replaced with the
actual clock and reset lines for the design (Clk and Reset,

in this example).

2. Reset assignments must be added (after the first if state-

ment).

Adding Functionality to Your New Module

3. The clocked operation of the design must be described,
using whatever VHDL statements are appropriate.

4. Concurrent statements (such as combinational assign-
ments or component instantiations, if any) must be entered
where indicated.

Continuing with the shifter example, we might modify the
template source code to describe our shifter as follows:

-- Auto-generated module template: SHIFTER

-- Note: comments beginning with WIZ should be left intact.
- Other comments are informational only.

library ieee;

use ieee.std_logic_1164.all;

-- use ieee.numeric_std.all;

-- use ieee.std_logic_arith.all;

entity SHIFTER is

port (

-- WIZ BEGINPORTS (PeakVHDL Entity Wizard command)
Clk: in std_logic;
Reset: in std_logic;
Data_in: in std_logic_vector(7 downto 0);
Shift: in std_logic;
Data_out: out std_logic_vector(7 downto 0)

-- WIZ ENDPORTS (PeakVHDL Entity Wizard command)

)i
end SHIFTER;
architecture BEHAVIOR of SHIFTER is
-- Note: signals, components and other objects may be
-- declared here if needed.

begin

-- Sample clocked process (synthesizable) for use in
-- registered designs.

31

Chapter 4: Using the VHDL Wizard

P1: process (Reset, Clk)
begin
if Reset ='1' then
-- Registers are reset here.
Data_out <= (others =>"'0");
elsif rising_edge(CIk) then
-- Note: registered assignments go here.
if Shift = ‘1" then
Data_out <= Data_in(6 downto 0) & Data_in(7);
else
Data_out <= Data_in;
end if ;
end if ;
end process P1;

roreoby

end BEHAVIOR;

For more complex (and realistic) designs, you will need to
make many such changes and additions to acheive the desired
functionality.

Compiling the New Module

After you have modified your new module, you will need to
compile it to verify that you have entered your VHDL state-
ments correctly. To compile the file:

1. Select your new module by highlighting its entry in the
Hierarchy Browser as shown in Figure 4-4.

B Pt Mew Gk Spiteice Opkne Wide Heo Begulel

Module, highlight the leRDEa22E s 8 & 66

Figure 4-4: To
compile a VHDL

module in the WYPRIJECT AL MED| [CwecEnameam s,
hierarchy browser - o
window and click the i \‘ lb] ﬂ Nt T EAE T S 1]

compile button. |1} HOCLLE SHIFTERAHD

Fehi R HALTE R

JLETRTY

32

Updating (Rebuilding) Your Project Hierarchy

Fi igur_e 4f5" During 'S PeakYHDL Transcript A=l E
compilation, error and -

status messages are Compile | Link | Simulate | Sunthesize | System |

written to the transcript =
i Analpzing C:hWACC-EDARVERAMPLE SYSAMPLENSHIFTER WHD into library WORK.LIB ... i

window. DP YHDL Analyzer Version 1.2

Copyright by Green Mountain Computing Systems, 1957,

Al rights reserved.

Build Sep 23 1938,

Compiling entity SHIFTER

Compiling architecture behavior of entity SHIFTER

CMACCEDARYERAMPLESASAMPLESSHIFTER WYHD compiled successfully

Compilation iz complete, all selected object files are up to date.

imp to Line or Eror Summary.

Jump to Line | Evror Summar_l,ll Close |

2. Click the Compile button, or select Compile Selected from
the Compile menu.

After you have invoked the compiler, a transcript window will

appear in which any error messages will be displayed (Figure
4-5).

Note

Depending on the number of syntax errors you have introduced during
your editing session, you may need to compile the module more than once.
Refer to the Using Simulation chapter for more details about finding and
fixing syntax and other errors.

Figure 4-6: You can MYPROJECT.ACC =] e

click the Rebuild gfm| | %] @ | & |

Hierarchy button at any =[5 MODULE SHIFTER.WHD
: . =-[E EMTITY SHIFTER [SHIFTERWHD]
time to update the project “-EJ ARCHITECTURE BEHAVIOR [SHIFTER.VHD]

Hierarchy.

33

Chapter 4: Using the VHDL Wizard

Updating (Rebuilding) Your Project Hierarchy

After you have succesfully compiled your new module, and
any time you make a change to it (or any other file) that might
impact the hierarchy of your design, it is important to update
the information in the Hierarchy Browser by rebuilding the
project:

1. Rebuild the hierarchy by clicking the Rebuild Hierarchy
Button as shown in Figure 4-6.

After you have rebuilt the project hierarchy, you can view the
hierarchy for your new module by clicking on the small plus
sign icon to the left of the module name, or by clicking the
Show Hierarchy Button to expand the hierarchy for the entire
project.

Using the Test Bench Wizard

34

Before processing a module for simulation, you will need to
provide PeakVHDL with a test bench. Test benches are VHDL
modules that provide input stimulus (and, if desired, output
value checking) for VHDL modules that are to be simulated.
There are many ways to write test benches (and you can
examine many different test bench styles by perusing the
PeakVHDL examples directory), but nearly all VHDL test
benches have the following in common:

B They have an entity declaration with no input or output
ports.

B They have one or more component declarations describing
the interface to the VHDL module being tested (called the
unit under test, or UUT).

B They have a series of signal declarations defining local
(top-level) signals onto which input values can be as-
signed, or from which output values can be observed.

Invoking the Test Bench Wizard

B They have one or more component instantiations corre-
sponding to the module(s) being tested. These component
instantiations connect the local signals of the test bench to
the corresponding ports of the unit under test (UUT).

B They have one or more process statements describing the
sequence of inputs applied to the UUT, and the tests to be
performed (if any) on the UUT outputs.

Writing a test bench that includes all of these elements is not
difficult, but it can be tedious if the module being tested has
many input and output ports.

The Test Bench Wizard helps by automatically generating a
basic framework of a test bench, and helps to reduce typing
errors by automatically filling in such things as port lists,
component declarations and component instantiations. The
Test Bench Wizard also generates a sample process for a
background clock, and generates informative comments that
guide you as you develop your test stimulus.

Invoking the Test Bench Wizard

To create a new VHDL test bench using the Test Bench Wizard:

1. Select (by highlighting) the VHDL module that this test
bench will be referencing. For this example, select module
SHIFTER.VHD.

For a design with multiple VHDL modules, you would select
the top-level module in your project’s hierarchy, unless you
are creating a test bench that is intended to test only one
component of the design.

2. With the module to be tested highlighted in the Hierarchy
Browser, select the New Module item from the File menu,
or click on the New Module icon.

3. When the New Module dialog appears, click on the Test
Bench Wizard Button as shown in Figure 4-7.

35

Chapter 4: Using the VHDL Wizard

Figure 4-7: The Test
Bench Wizard is
accessed from the New
Module dialog. Be sure
to highlight the module
to be tested before
invoking the Test
Bench Wizard.

Verifying the Port List

Figure 4-8: The test
Bench Wizard attempts
to read your VHDL
module and
automatically fill in the
Port declarations edit
window. All you need to
do is verify the port
declarations and click
Create.

36

When the test bench wizard is invoked it examines the port
list of the module that you have selected (in this case
SHIFTER.VHD) and attempts to fill in the port declarations
edit box for you, as shown in Figure 4-8. All you need to do is
verify that all of the ports have been listed along with their
correct direction and type:

_| S L P
R T e e

Verifying the Port List

1. Examine the port declarations to ensure they match the
declarations show, then click Create.

Note:

If you are generating a test bench for a module that was not created using
the module wizard, you may need to manually enter the port list. You can
save time by using cut and paste to paste in text copied from an editor
window.

2. When prompted, enter a name for the new test bench
modaule, or accept the default name (in this case
TEST_SHIFTER.VHD).

Your new test bench module is now complete, and is dis-
played as shown in Figure 4-9.

Modifying the Test Bench

This test bench template source code must now be modified
to describe the desired test stimulus. The exact changes
needed to this template will depend on how extensively you
want to test the design. We can create a simple test sequence
for this shifter by doing making the following modifications
to the source code:

1. In process Clockl, replace the template’s “dummy” clock
signal (_CLOCK_) with the actual system clock signal
Clk.

2. In process Stimulusl, replace the assignments to _RE-
SET_ so they instead refer to signal Reset.

3. Add some additional stimulus to this design as shown in
the source file listing that follows. The sample stimulus
assigns a value to signal data_in , then sets the shift input
to ‘1’. A subsequent wait statement will cause the simula-
tion to move forward for some period of simulated time
(in this case 100ns). Similar sequences of assignments and
wait statements apply additional test inputs.

37

Chapter 4: Using the VHDL Wizard

Figure 4-9: The new test
bench template is

generated and added to
the project. -
-- Boras: replece BESET_ wnd _CLOCH_ with yo
E MODULE TEET_SHIFTERWHD - Talled W Ap-pn.;ru:i- |Delece Thic e o
=[5 EMTITY TESTERCH [TEST_SHIFTER 4HD] ——
=+ SRCHITECTURE STMULLS [TEST_SHFTERW
= [COMPORERT DUT [TEST_SHFTERWHE]
B EHTITYSHFTER BHFTERWHD] — deyokveisl iEolE grsE Tl .
=8 MODULE SHFTERWHD -
= [@ EMTITY SHIFTER [SHIFTER WHD| - desple anisalue.
[ARCHTECTURE BEEHAVIOR HIFTERAHD] fammr ce 10 o Basar the epemee
Baic for FERIOL; -- Baic ors Slack opcls
Rhgar == P00 e dd-REEELIE T
:: Brcser mooe acimolol hede. .
Buca v += “1L1L0=i0e" ; J
vaie fer BERIIE;
Ehdgr o= 40
waie for PERIOE + d;
" T - Turn afé che clack |
|
CLOCK1: process
variable clktmp: std_ulogic :=‘0’;
begin
wait for PERIOD/2;
clktmp := not clktmp;
o— Clk <= clktmp; — Attach your clock here
if done = true then
wait;
end if;

end process CLOCK1,;

STIMULUSL1: process
begin

— Sequential stimulus goes here...

— Sample stimulus...

Reset <=‘1"; — Reset the system
wait for PERIOD; — Wait one clock cycle

I

Reset <= ‘0’; — de-assert reset

38

Summary

Modifying the Test Bench

— Enter more stimulus here...

Data_in <= “111100007;
wait for PERIOD;

Shift <=1";

wait for PERIOD * 4;

done <= true; — Turn off the clock
wait; — Suspend simulation

end process STIMULUS1,

end stimulus;

After you have made the above changes to your test bench
template, save the module and compile it:

4,

Highlight the test bench module in the Hierarchy Browser
and click the Compile button.

After you have successfully compiled your new test bench,
click the Rebuild Hierarchy Button to bring the Hierarchy
Browser display up-to-date as shown in Figure 4-11.

Your project is now ready for simulation.

This chapter has described the basic features of the PeakVHDL
Module and Test Bench Wizards. You will find the PeakVHDL
Wizards to be a big time-saver as you enter and verify new
design modules. In the next chapter, you'll learn how to link
and load PeakVHDL projects for simulation.

39

40

Chapter 5: Using Simulation

The previous two chapters described how to create new
projects and add or create VHDL source file modules. This
chapter will describe how you can use PeakVHDL's built-in
simulator features to verify your VHDL design projects.

Understanding Simulation

Simulation of a VHDL design description using PeakVHDL
involves three major steps:

B Compiling the VHDL modules into an intermediate object
file format.

Linking the object files to create a simulation executable.

Loading the simulation executable and starting the simula-
tion.

Each of these three steps is represented by an icon button in
the PeakVHDL application. If the dependency features of the
application are enabled, the PeakVHDL application will check
the date and time stamps of files, and will examine the hierar-
chy of your design to determine which files must be compiled

41

Chapter 5: Using Simulation

and linked at each step. When a simulation executable has
been successfully linked and loaded, the Waveform Display
appears and you are ready to start a simulation run.

To help you understand this process, we will load and simu-
late the sample project developed in the previous chapter.

Note

If you did not follow the tutorial in the previous chapter to create a new
project, you can follow these steps using one of the standard examples
provided with PeakVHDL.

Loading the Sample Project

Figure 5-1: With a
project loaded into the

PeakVVHDL application,

the Hierarchy Browser
becomes your primary
view of the files and
designs units making
up the project.

42

To load the sample project:

1. Invoke the PeakVHDL application and select Open Project
from the File menu. Navigate to the Examples\Shifter
directory (or to your project directory created in the previ-
ous tutorial) and choose the Shifter.ACC file. The Project
will be loaded as shown in Figure 5-1.

o Accelade Prab S¥HIN FrakSwftc Eddizn rogatmed tz FIDAHY]

Fbs Ed Yew Gwdse Ogticrs Windos Help Repisted

.IJ_LE.IE_LH.IALI.[_I_I_IE_I;E

M E| | W cacEns

il_'i‘.l_"ﬂ.lll il
HODULE TEST_SHIFTER WHD
=-[§ ENTITY TESTERCH [TEST_SHIFTERVHD|
5|8 ARCHTECTURE STULLS [TES T_SHFTERW-
;- [DOWPOREHT DUT [TEST_SHIFTERAWHD]
B EHTITY SHFTER [3HFTERVHD]
=~ MODULE SHFTERWHD
5[ENTITY SHFTER [SHFTERWHD|
[ARCHTECTURE BEEHSYI0R [SHIFTERAVHD]

-- Barae: replace RESET_ and _CLOCH_ with yo
-- TAGSE &I SPEropTiscs. |Delace Thir proces

— ddyekrcisl aTiEGleE goeE Ters- .

— aspls ciscloe. .

Fagar += ‘1'; - Rager che syces
waic fow H.H!'.Ilr == Baic aves 2lack apals
Raiar. o=

D - die-REDAET TR

== Brres wore scimclor hece. .

Lt dw == “1L1L0aDd®;
wair o FERDIE;

Shifr o= ‘1°;
waic for FERIODL = 4

== Turm off cka clack

[T T =

Using the Hierarchy Browser

Using the Hierarchy Browser

Figure 5-2: Use the
plus and minus icons to
examine the hierarchy
for each module.

After you open the project, you will see that there are two
modaules listed in the Hierarchy Browser (Figure 5-2). These
modules (TESTSHIF and SHIFTER) are VHDL modules that
were entered to describe the operation of the sample circuit.
TESTSHIF is a test bench for the circuit, while SHIFTER
describes the function of the shifter circuit itself. You can
examine or modify either of these modules by double-clicking
on them to invoke a Source Code Editor window as described
in the previous chapter.

dfm| % % M| &

= [E MODULE TEST_SHIFTER %HD
. E-[E EMTITY TESTEMCH [TEST_SHIFTER.WHD]
E-[E ARCHITECTURE STIMULUS [TEST_SHIFTERME
=-[f COMPOMENT DUT [TEST_SHIFTER.WHD]
. EMTITY SHIFTER [SHIFTER.WHD]
=-[F MODULE SHIFTERWHD
=-[E EMTITY SHIFTER [SHIFTER.WHD]
- ARCHITECTURE BEHAVIOR [SHIFTERMHD]

<] | ol

The Hierarchy Browser does not provide any immediate
indication of which module represents the “top” of your
design. (The order of modules appearing in the Hierarchy
Browser is not significant.)

You may choose to select different top-level modules depend-
ing on whether you are invoking simulation or synthesis, and
depending on whether you want to simulate just a portion of
the circuit or simulate the entire circuit. You may also have
more than one top-level test bench in your project.

43

Chapter 5: Using Simulation

You can, however, display the hierarchy and file dependencies
for any module displayed in the Hierarchy Browser. By click-
ing on the small white “+” icons to the left of each module,
you can view the hierarchy for that module.

The Hierarchy Browser is the point from which you initiate all
processing of your design, from compiling and linking to
synthesis and simulation.

Compiling Modules for Simulation

44

Setting Compile Options

Before compiling this design, take a moment to examine the
compile options that have been selected:

1. Highlight the module SHIFTER in the Hierarchy Browser.

2. Select Compile from the Options menu (or click on the
Options button) to bring up the Compile Options dialog.
The options should be set as shown in Figure 5-3.

The options set are:

B Bottom up to selected. This option tells the compiler to
examine the dependencies of the project, and to compile
lower-level VHDL modules before compiling higher-level
modules that depend upon them.

B Compile only if out of date. This option enables the date
and time stamp checking features so that modules are not
compiled unless they are out of date. This can save time
when you are compiling a large project repeatedly (such as
when fixing syntax errors in higher-level modules).

B Compile Into Library. This option specifies that the cur-
rent module, SHIFTER, is to be compiled into a named
library, in this case WORK.

Compiling Modules for Simulation

Figure 5-3: The Options =
dialog allows you to set w]m | Gmibain | Gurdwsiice | Spiens | Fasgeiekon |
processing options for Dorwgls pader Dorwgls opin
compiling, linking and I Sekooksd B4 oo F Conple ok T ot of date E‘
simulation. A CR——
Dpdonns fid sebsched reodubs
Sminchsd roduls na Corspila inda ibuary Estamal [oo’] iz _]
TEST_SHFTERVHD [wor | ®'

| _ Goeet | |

(For detailed information about these and other options,
please consult the PeakVHDL on-line help information.)
When you have verified that the options are set to these
values, select the Close button to close the Options dialog.

Starting a Compile

The next step is to compile the source modules. With the
Bottom up to selected option selected, you have two options:

B You can first compile the SHIFTER module, then compile
the TESTSHIF module or,

B You can simply compile the TESTSHIF module, and let the
dependency features automatically compile the lower-
level SHIFTER module.

Use the second method to compile the two source files:

1. To start the compile, highlight the TESTSHIF module in
the Hierarchy Browser and click the Compile button.

45

Chapter 5: Using Simulation

Figure 5-4: During
processing, status and
other messages are
displayed in a scrollable
transcript window. If
you wish, you can save
the contents of the
window or print it to
any Windows
compatible printer.

S Peak¥HDL Transcript [0l

LCompile ||_.ink | 5imulate| Sgnthesize' S_l,ls_teml

Compiling architecture behavior of entity SHIFTER j
CAACC-EDARERAMPLES\SAMPLEYSHIFTER WYHD compiled successfully

Analyzing C4WACC-EDARNVEXAMPLESWSAMPLEATEST_SHIFTER MHD into ibrary WORK.LIE ...
DPF YHOL Analyzer Yersion 1.2

Copyright by Green Mountain Computing Systems, 1997,

&l rights reserved.

Build Sep 23 1998,

Compiling entity TESTEMCH

Compiling architecture stimulug of entity TESTBHCH

CAACC-EDARNEXAMPLES\SAMPLENTEST _SHIFTER.WHD compiled successfully

Compilation iz complete, 3l selected object filex are up to date.

7] 3

Tip: elick on a line with a numbered errar m & and click Jump to Line or Errar Summary.

Jump to Ling | Emar Summalyl Cloze |

During compilation, status and error messages are written to
the Transcript window (Figure 5-4). If you wish, you can save
these messages to a file or print them directly.

When compiled, each VHDL source file (module) in the
project is processed to create an intermediate output file (an
object file). These files, which have a .O file name extension,
must be linked together to form a simulation executable.

Note:

If system or other errors occur during the processing of this design example,
you should check to make sure you have properly installed and registered the
PeakVVHDL software. The software will not operate without first being
registered.

Linking Modules for Simulation

46

Setting Link Options

Before linking the modules, take a moment to examine the link
options:

Figure 5-5: The link
options allow you to
specify a default top-
level entity and
architecture, and also
give you control over the
automatic update
features of the interface.

Tie s b e thd B pacpsol sl b0 up-bo-ciaks bedore bnking. T o rebad the: progol hiedsohe. abok
tha Aabasid Hem asches bed ban ot ha bem asches i plap mandees

Linking Modules for Simulation

' Updets alysct fiaz bakam kg P E ekl roascs-val debragang Lo
I Link cip § cul of dale

Erwidatn configusstion

Topriesed dniiy'oorfigpantion Topriesed -Fohdsoties

I I C
EOF Ba raura S0F ruianca paih EOF cplrmralion EDOF rmng

| | | =] T M = g T W

1. Highlight the module TESTSHIF in the Hierarchy Browser.

2. Select Link from the Options menu (or click on the op-

tions button and choose the Link tab) bring up the Link
Options dialog. The options should be set as shown in
Figure 5-5.

The options set are:

B Update object files before linking. This option tells the

linker to examine the dependencies of the project, and to
compile lower-level VHDL modules before linking. (If the
Compile only if out of date option is specified in the
Compile Options dialog, only those source files that are
out of date will be recompiled.)

a7

Chapter 5: Using Simulation

Figure 5-6: To link the
project for simulation,
you must first select a
top-level module, entity
or architecture.

48

gfs| | % @ | @ |

=+ [E MODULE TEST_SHIFTER WHD
: EI EMTITY TESTENCH [TEST_SHIFTER.WHD]
El ARCHITECTURE STIMULUS [TEST_SHIFTER.VE
El COMPOMEMNT DUT [TEST_SHIFTERYHD]
- EMTITY SHIFTER [SHIFTER.WHD]
El MODULE SHIFTER.YHD
El EMTITY SHIFTER [SHIFTERNHD]
- ARCHITECTURE BEHAVIOR [SHIFTER.YHD]

1 | |

B Link only if out of date. This option enables the date and
time stamp checking features so that the modules are not
re-linked unless the simulation executable is out of date.

B Design Unit Selected. These fields allow you to specify a
default top-level entity and architecture for the selected
module. Because this project does not include multiple
entities and architectures within the top-level module, you
can leave these fields blank.

When you have verified that the options are set to the values
shown, select the Close button to close the Options dialog.

Starting a Link Operation

When linking a project, the PeakVHDL linker collects all
object files required for the selected top-level module, and
combines these object files with any libraries you have speci-
fied in your design (such as the IEEE standard logic library) to
create the simulation executable.

To link your design and create a simulation executable:

3. Highlight the TESTSHIF module in the Hierarchy Browser
(Figure 5-6).

Figure 5-7: During the
link process, the object
files (created as a result
of compilation) are
combined with any
external libraries to
create a simulation
executable.

Setting Simulation Options

'S PeakYHDL Transcript BIETES

Compile Link |§imulate| Synthesizel S}lsﬁeml

loading stdlog_b -
loading SHIFTER J
done

Generating code for CAACC-EDAREXAMPLES \SAMPLEATEST_SHIFTER.DP...

'YHOL DP 80386 Code Generator Yersion 1.2

Copyright by Green Mountain Computing Systems, 1997,

Al rightz reserved.

Build Sep 191938,

Generating code

done

Linking iz complete, the executable file iz up to date.

1] 3

Tip: click on a line with a numbered emor m e and click Jump to Line or Emor Summary.

Jump to Ling | Error Summaryl Cloze |

4. Click on the Link Button to initiate the link operation.

During the linking process, messages will be written to the
PeakVHDL transcript as shown in Figure 5-7.

The result of linking is a simulation executable file ready to be
loaded for simulation.

Setting Simulation Options

Before loading the simulation executable, take a moment to
examine the simulation options:

1. Make sure the TESTSHIF modaule is still highlighted in the
Hierarchy Browser.

2. Select Simulate from the Options menu (or click on the
options button and choose the Simulate tab) to bring up
the Simulate Options dialog. The options should be set as
shown in Figure 5-8.

The options set are:

49

Chapter 5: Using Simulation

Figure 5-8: Simulation %
options include Cowpde | Lk Sirmalatm || Brivosion | e | Foeghsiodon |
waveform display Gl stion,] chapliy options
format, and default run- [~ T b bdcskudrg 7 Erabl cucs kvl dabagang g
to and step times.

WSO cleli st Tiws il

B g = =

|
K
E
F
i
i
[©

Tioe oo ek i B b gy b b ol sl il ™o ol et b wespl] sl i b il phanges
Ik sifuci Thasa cplont e xeved veth Ha promct

B Update simulation executable before loading. This
option tells the simulator to examine the dependencies of
the project and, if necessary, compile lower-level VHDL
modules and re-link them before loading.

B \ector Display Format. This option specifies how vector
(array) data types should be displayed. Select binary for
this field.

B Run to Time and Step Value. These fields allow you to
specify a default amount of time that the simulation
should run. These values can be changed during simula-
tion if necessary.

B Time Unit. This field specifies the unit of time (eg. ns, ps)
to be used during simulation.

(For detailed information about these and other options,
please consult the PeakVHDL on-line help information.)
When you have verified that the options are set to the values
shown:

3. Select the Close button to close the Options dialog.

50

Selecting Signals to Display

Figure 5'9.' YOU mUSt g Accolnde PeatYHUL Poakbwle a8t ingiciaied In PAlAdY|

select a test bench B E# W4 Jwwdes Spehede Npkons Windss bdp Bl

module when loading RS IREI T A (= P P A
simulation.

= |5 WODULE TEST_SHFTERWHD
B[EWTITY TESTAHCH [TEST_SHFTER WD
= [ARCHITECTURE STIMULLE [TEST_SHIFTER 4t
- ﬂ COMPIHENT DUT [TEST_SHIFTERAVHD]
Ei EMTITY SHFTER [EHFTER YHD]
- [MODULE SHFTERWHD
- E] EHTITY SHFTER FHFTERYHD] ;I
[ARCHITECTURE BEHEMORA [SHIFTER SHO|

| |

2 %EF'.EN’FLE\TEFI’}-IFI’EHH’..
Eustewa 1937,

| _plrﬁiu:md.u

Loading the Simulation Executable

At this point, you have compiled each of the VHDL modules
into an object file format, and have linked all of the object files
to form a simulation executable. To start the simulation pro-
cess, you will use the Load Simulation Button.

To load the simulation executable:

1. Make sure the TESTSHIF module is selected in the Hierar-
chy Browser (Figure 5-9) and click on the Load Button
shown below:

The simulation executable will be loaded and the PeakVHDL
simulation application (PeakSIM) will appear.

51

Chapter 5: Using Simulation

Figure 5-10: The Select
Display Objects dialog
allows you to select
specific signals withing
your design for display.
You can save your
selections to a file using

the Save Objects button.

Erebabls ohyol Obga i dupliy
LLLCE . chinp [

[ias_ii

isda_

oo

FHuzet
1

C

L1/ H

ol | A

Tx Subexd b chmcix [sgnals and vaasbla] o depley. L s tha 2dd Pravesar bution I scd ol lop-lvel ngrak. Mot
Worinbies o Dol aneslnbile oa ceplayy I e e deobaien] i babesdend paciomsdsesd

Selecting Signals to Display

52

When you click Load Button, the PeakSIM application ap-
pears and immediately displays a Select Display Objects
dialog. This dialog allows you to choose signals to observe
during simulation. If you select the Add Primaries Button (the
top-most button), all of the top-level signals in your design
will be moved to the display window.

You can select other signals within your design to probe
important signals in your design.

Note:

You can add as many signals as you wish from the Signal Display window,
but the speed of the PeakSIM application will be negatively impacted if you
select too many signals. For this reason you should select only those signals
that are important for verification and debugging of your design.

To select signals to observe in simulation:

1. Use the Add Primaries button to move the top-level
signals from the Available window to the Displayed
window.

Starting a Simulation Run

2. Highlight individual signals in the Available window and
use the Add button to move individual signals to the
Displayed window.

3. Use the Up and Down buttons to rearrange signals, put-
ting them in any display order you wish.

Figure 5-10 shows the Select Display Objects dialog with some
of the design’s signals selected for display.

4. When you are satisfied with the selected signals, click the
Close button to close the dialog and prepare the simula-
tion.

Changing Simulation Options

Figure 5-11: Change the
simulation end time and
other options by using
the Simulation Options
dialog. Note also that the
initial (default) values of
many of these options
are specified in the
PeakVVHDL Simulation
Options dialog described
previously.

You are now ready to simulate the sample project. Before
doing so, however, you may want to modify some of the
simulation options that were specified earlier for the project.
You can do this by choosing the Options menu item, or by
clicking on the Simulation Options button in the PeakSIM
toolbar.

The options that can be changed in the PeakSIM options
dialog window are shown in Figure 5-11. Many of these
options are the same options that you specified previously in

i by fres g e Tires

fan [0 s

Weoks giple banad SR S0 W sgrdl degdh

oy :J I.Ifulllm :J] S iprak |
™ Coanirand vendiea [ShosWITAL inderenks

F Sralimoba

Thr obuagess s ki s optinrs mall ik bk sfbsol ol Ehe siyasloans B s

o Carcul

53

Chapter 5: Using Simulation

Figure 5-12: When you

£ Puak S - [TEST

click the GO button, the BB Yew Brwidion edm b AT T
simulation advances to &0 Ee @ e | @] T\ =] | [remwe
. | 10 o Wi o
the e_nd time you have - TN —
s,qec:fled. The waveform D;;;"""""""" o T T
display can be zoomed o=l
. Fesitda’l 1
and panned to display bk w T
all or part of the
waveform.
Ll | ETIS] o
T il
B - Awts-grmeratod module lemplatn; SHFTER
-
ke — Mate: comments beginning sith WiZ sbaeld be ke s,
B - (e comernds san (nformaiisnsd saly.
-
T R ——— . Y =l
Gemag vadiables, .. &)
Foe iy

Ll

Rt ro imes D030 et

Gipppad o m

|Ealacturdina SHFTER: D

ol

the PeakVHDL Options dialog. These options are repeated
here to allow you more control over the simulation as you
debug your design. For example, you can update the simula-
tion time to reflect the desired simulation end time, or tempo-

rarily choose an alternate vector display format.

For detailed information about available options, please

consult the PeakSIM on-line help information.

Starting a Simulation Run

After you have selected signals to observe during simulation,

you can click on the GO Button to start the simulation.

Simulation will run until either:

B The specified simulation end time (duration) has been
reached or,

B All processes in your project have suspended.

To start simulation using the previously-specified run time:

54

Summary

1. Click on the Go button to simulate this project and gener-
ate a waveform similar to that shown in Figure 5-12.

2. Use the Zoom In Button and the horizontal scroll bar to
change the display range as shown.

Working with Waveforms and Cursors

The PeakSIM Waveform Display has a variety of features for
examining waveform results, saving and printing waveforms
and measuring times between events.

The Waveform Display has a dynamic cursor that allows you
to quickly pan across a dense (zoomed out) waveform and
observe values:

3. Move the mouse pointer over the waveform display and
observe the changing values displayed in the signal
display area (the small window to the left of the wave-
form).

The Waveform Display also includes selectable cursors that
can be used to accurately measure the distances between
events, and to view the timing relationships between events
on different signals.

To add a cursor to the Waveform Display:

4. Click the mouse button within the Waveform Display
window.

A new cursor is displayed each time you click the mouse
button. When you add multiple cursors, PeakSIM adds a
measurement line and value allowing you to quickly deter-
mine the time between two or more events (Figure 5-13).

To delete the cursors you have placed:

5. Select the Remove All Cursors item from the View menu.

55

Figure 5-13: Click the
mouse button over the
waveform display to add
measurement cursors.
Use the Remove All
Cursors from the View
menu to remove the
cursors.

Summary

[E] Bl en Gwadsbon Window Hew =15 %
A N D N el e) N | B

—W Hilrs ECC [(e

D1 LT | I] 1 I 1 T 1 I

0 adn_imw 1111 00 T T —

nu;::mnm —mmi F AL E—

icora={

H et n Tl

ket ax.

Lol Juij KT Al
aont; il
00ng; - suin-g # mpiply bmp SHIFTER
aond: -

0004} - Noln! comesenis begmaing wilh W12 should be e intacd

0006 - Other comments are dsrmational onky,

aone; -

NN — PeakVHNI wnthaane weesinn: B.07h ;I
Geliing varisides -
Aeady.

Aunning to time: 1000 ng =

il ¥

Sioppad f ance Salcted ra SHFTER 0 r

56

This introductory tutorial has covered only the basics of
VHDL simulation using the PeakSIM application. The simula-
tor supports additional features such as text 1/0 that allow
your VHDL design to interact with the de-simulation environ-
ment, and includes includes source-level bugging features,
which are described in the next chapter.

Chapter 6: Using the Debug Window

PeakVHDL™ Professional Edition includes a powerful feature
called source-level debugging that allows you to observe how
your VHDL design is being executed during simulation. Using
this feature, you will be able to step through your VHDL code,
set breakpoints, and more easily find and fix problems in your
VHDL design description.

Understanding Source-Level Debugging

The source-level debug window allows you to follow the
execution of your VHDL design at the level of VHDL source
file statements. This is useful for debugging complex sequen-
tial statements, determining the order in which statements are
processed, and understanding the impact of scheduling, delta
cycles and other complex aspects of model execution.

To allow source-level debugging to be performed, the
PeakVHDL linker must insert certain precompiled code
statements into your simulation executable. These statements
are not visible to you, except that you may notice your com-
piled VHDL projects require more disk space after linking
with source-level debugging enabled.

57

Chapter 6: Using the Debug Window

During simulation of your design, PeakVHDL keeps track of
which VHDL source file lines are related to the currently
executing compiled and linked code, and displays the appro-
priate VHDL source file in a source file display window. In
addition, PeakVHDL maintains a list of breakpoints that you
have requested and stops the simulation whenever one of
these break points is encountered. It then waits for you to
either continue the simulation using the Go or Step Time
buttons, or single-step through your code using the Step Over
or Step Into buttons.

Whenever the simulator stops at a break point or is stepped to
a new line in the VHDL source file, the waveform window is
updated to display the current values of all selected signals.
This feature allows you to observe the order in which signals
and variables are updated in your design, and allows you to
(for example) determine when you have incorrectly specified a
signal or variable assignment.

A Sample Project

58

To give you a better understanding of source-level debugging,
we’ll present a sample project and show how it is compiled
and run. You can follow along with this example by first
opening the PeakVHDL standard example getpizza, which
can be found in the examples directory of your PeakVHDL
installation area.

The getpizza example project is intended as an exercise in
writing test benches, and is also useful for demonstrating the
concepts of source level debugging. At the center of getpizza
is a driving game that was inspired by the “ChipTrip” ex-
ample first described by Altera Corporation using their AHDL
PLD language. In our version of the design (which is de-
scribed in more detail in VHDL Made Easy, published in 1996
by Prentice Hall), the objective is to create a sequence of test
inputs that will cause an imaginary work-weary engineer to
proceed from his office to the beach, as quickly as possible,

Figure 6-1: The sample
project we’ll use is an
exercise in test bench
development: a driving
game.

A Sample Project

without getting a speeding ticket. To make the trip more
interesting, our hero must stop and pick up a pizza on the
way. The map of Figure 6-1 illustrates the possible routes that
can be taken.

Work Pizza Shack
Freeway oo
Commercial
Residential

This map shows three different types of roads: freeways,
commercial streets, and residential roads. The car being driven
has only two possible speeds, fast and slow. When the car is
driven slowly, it advances from one point on the map (say,
from Ramp1l to Ramp2) in a given period of time. When
driven fast, the car proceeds twice as far. There is no speed
limit on the freeway, so the car can travel at full speed without
fear of getting a ticket. On commercial streets, the car may
exceed the speed limit just once and get away with it. On
residential roads, any attempt to drive fast will result in a
ticket.

59

Chapter 6: Using the Debug Window

In our simulation, and in the underlying design description, a
fixed period of time is represented by a single clock cycle.
Inputs for the speed and initial direction of travel are repre-
sented by signals Speed and Dir. The location of the car at any
point is represented internally to the circuit by a state ma-
chine, but it is kept hidden at the top level of the design and in
the test bench itself. The current status and success or failure
of a trip are observed on the signals DriveTime, Tickets, and
Party, which tell the player how long the drive has taken, how
many traffic tickets have accrued, and whether he or she has
yet arrived at the beach with the pizza. (The VHDL source
files and PeakVHDL project file for the entire design can be
found in your examples\vhdI93\getpizza installation direc-

tory.)
The test bench that we have written for this design reads
symbolic test commands from a file, allowing the game to be

easily tested and various driving scenarios to be described
without having to recompile the design each time.

Loading the Sample Project

To load the sample project,

1. Invoke PeakVHDL and select the Open Project button or
select the Open Project item from the File menu.

2. Navigate to the examples\vhdI93\getpizza directory and
choose the getpizza.acc project file.

After you have opened the project, you will see that there are
four VHDL modules listed in the Hierarchy Browser. (You can
invoke the text editor to examine these source files if you
wish. To invoke the text editor, double-click on any entry in
the Hierarchy Browser as shown in Figure 6-2.) The testpizza
module describes the test bench for this project, so select that
module by clicking once on the MODULE TESTPIZZA entry
in the Hierarchy Browser.

Figure 6-2: Open the
GETPIZZA project to
begin. The project
includes four VHDL
sourece files.

Setting Project Options

-_— DI.I.I.'I.ﬂ'ﬁ A, I:n:p-l.uu by b Kdmav s ChipTs
== depcribised in the Alvsvs HazéFlug IT Jecrive

B HODULE TATPEZZAVHD
5[ENTITY TESTRSMWE [TETPIZZ4VHD]
5[} ARCHTECTURE MTERSLTHE [TETRZZAW
= [E COMPOREHT LT [TETPEZA VHE
B ENTITY FEZATOR [FEZAT D WD
= [B ARCH TECTURE PARCER [15TFE24 WD
= [0 COMPOREHT LT [TETPEZA VHE]
B ENTITY FEZATOR [FEZAT D WD
5 [B WODULE PEZATOPVHD
5 [ENTITY PEZATOF FEZATOFWHI|
- ﬂ ARCHTECTURE STAUCTURE |PLZ2ATOR Y
[COWPOREHT TRAP! FEZATOFVHI|
[ENTITY TRAP [PIEZACTL VHE]
=N] COWPOREHT HAYT [FLEZAT OF WHE

== Thir tart banch bertr ol getpizzs driving
== writhen wibh 1075-1¥33 fasturse,. snd sakay
== LEIE 1075.7 mrrl bamt 170 packeger

== Tia tert Farch cawly commsndrs from s fila
| — bro detarmine bow the gess rhould b “plepss

- Gopyright L¥3%, Accolwds Parign dwbcastian

] librery iawa
urn dawa_wtd_Lesgic L1854, mllr
urs iawa._mmeric_rtd mlly -- Thir darign wes

Mity Dartgmas 17
and antity Dartemar

Setting Project Options

Before processing this project for simulation, we’ll need to set
certain project options to enable source-level debugging. To set
these options,

1. Click the Options button, the select the Link tab (or select
Link Options from the Options menu).

61

Chapter 6: Using the Debug Window

Figure 6-3: To enable
source-level debugging,
be sure the Enable
source-level debugging
check box is selected in
the Link Options dialog.

2. Set the options as shown in Figure 6-3.

Cowpds Link || Brwilatn | Syndvssion | Spskers | Foagioiraton |
Link i ‘
I Lipdste obysot fies bedore bnking I Erasbile soamces-esed detn g L
F Link ool @ pad od chabs

B dation Qonfigeation

Top-avel sntiyconfpeston Top-vel achiscisa

[TEET BanE |PAREER ®
EDF B rwnes SOF i pady EDF cplnizsiion | - 5DF iring

[I | I =]| MR € g € Nu

T Ik cplians 1al nithe Ish spply ko ha snlre proped, and s cresd pah ha pogect. Ta beck-snotale
] rlrwesion Lereg a0 3 0F Mle, e thee rowes o s B e B naiande rores 0 s DOMDO0Ed

coan=parsing ba ha S0F reng dals

o | _ coee | |

The important Link option being set for this example is the
Enable source level debugging option. This option causes
debugging code to be added to the compiled and linked
simulation executable. Also note that the 1076-1993 option is
set. This is required because the getpizza example has been
written using features of the IEEE 1076-1993 language specifi-
cation.

Loading the Simulation

62

Our sample project is now ready for simulation. To load this
project for simulation,

1. Select (highlight) the testpizza module by clicking on the
MODULE TESTPIZZA entry in the Hierarchy Browser.

Figure 6-4: Use the
Select Display Objects
dialog to select signals
for display. You can
select the two state
register signals as
shown.

Loading the Simulation

Srvaabla chi Dbucte iz
S sttpwe|
Z= ol
gt =
UUTEOUMT 24 IN:ECETI N i

LIUIT. Hi 4 hrva_pir=a LILT. W& pracent_ctale

UUT HEwT rose_tiaie ik K Y (T R st

LiliT. AwzatBiar

T, s

UuT 1p:|-.al1':I ilhl

UUT. Tooke?

UUT. TickoatDnbect

UUT TRAP] i

UUT. TRF1. raet_sain

" e Dbiech

Lpaed Chbpscin
_tee |

Tioe ekl s odiechs [robs red veslahbes] b chpling. Ll B e Prisnasisy bastimn by skl o8 kg i, ot

Wirssbinz i onlp ivvalaba e cepley o Hap s dechssd mlabeled procanzar

2. Click the Load button, or select the Load Selected item
from the Simulate menu.

Before loading the project, PeakVHDL will compile all VHDL
modules and link them to create a simulation executable. After
the simulation executable has been loaded, PeakVHDL will
display a Signal Selection dialog (Figure 6-4) allowing you to
select signals for display.

To select signals,

3. Use the Available Signals window to select some or all of
the signals in the design, or use the Add Primaries button
to select all top-level signals in the design.

After you have selected signals for display, the waveform
display and source-level debug windows appear as shown in
Figure 6-5.

63

Chapter 6: Using the Debug Window

Figure 6-5: The
PeakSIM application

includes a signal display

window (upper left), a
waveform display

window (upper right), a

source code window

(center) and a transcript

window (bottom).

HALIT P . parand_riata=
JLIIT T REFT ool idsn

NI TS

KN i) 1T]
[T EI
Bl — Debving game, inspired by Se Alera ChipTrip sxampin
kY — deoscriberd b S Alers ot Ples B Gefeg Stafed
Bk — enpmepnll. This desige ix desorbed b mgen dotail in “YHOL
S — Mgy Eaey™, by Dayid PeBerin and Douglas Taydor
el —

Bl7: — Thas e contains the “guis™ of the design, and delines =
bt plii 7 pfeeem compleie... |
Gt my wadiahles...

Pty —

"
Eesbnoied bes P

Setting a Break Point

You can set or remove breakpoints before starting the simula-
tion, or at any time the simulation is stopped. Before starting a
simulation run, set a break point in the pizzactl module.

To set the break point,

1. Use the module name drop-down list box to select the
pizzactl module.

2. Scroll through the pizzactl module and find the source file
line shown in Figure 6-6.

3. Seta break point at the indicated line number by double-
clicking or by using the Toggle Breakpoint menu item from
the Simulation menu.

Running Simulation

64

Now you can start the simulation and let it run to the selected
break point. To start the simulation,

Figure 6-6: Scroll
through the pizzactl
module to find the
source file line shown.

Running Simulation

[=] Fle Ween Swadsbon Windew Hele ST-TE]

& |5 EneEn| e @] - | @] 565] S| [remsaTivin =

=

=

e T e

=

et e

Eresdn

[TRkt s

U T A prmmand_shabas

UT. TRAP] . pescend_ilyie-

ol 2| |
iim drive Lo Lot (el =i
o111 wnd it
miiz: when Dowmboem =>

L =
o4 i Chir = BOEETH e
oiif; o A e
0i16; wlsif Oir = EAST shes =

Initialization crmplens =]

Geilling varisidss

Aeady. =

| _"l:|

Feswdys Benshpeet jed o FIZZACTL 112 5 edevisd e FLT

1. Click the Go button.

The simulation will execute until it encounters the breakpoint
that you have selected, or until it reaches the specified simula-
tion end time if no breakpoint is encountered. It will then stop
execution and display the current module and source file line
in the source file display window. It will also update the
waveform display so you can see the current values of all
signals and variables being displayed.

At this point you could single-step the design to view exactly
how the state machine represented by this section of code
operates, or click the Go button to continue to the next
breakpoint (or to the specified simulation end time, if there are
no more breakpoints set).

Try using the single stepping features. To single-step the
simulation,

2. Click the Step Over button repeatedly until the current line
pointer (the green arrow icon) in at the position shown in
Figure 6-7.

65

Chapter 6: Using the Debug Window

Figure 6-7: The Step
Over button allows you
to trace the execution of
your VHDL source code
line-by-line.

Summary

& | W _|_| Ha| @& | @ | & _|_| el _| |Pt?_1:m:11_ﬂn |
10

=ty

o=l o | S [L =l | S

v Trsa=i T 1 =+ [31 XTI L1 | S - T 1

Fosip=T 1

JFemmi=1T 1 1

|5 e L ! L T L L ir e

T chate=0 11

AT AT pasiand_sistemH sl =) W e [Fsnens
J_AIT T AL prmcand_ctade=tagal E [rean

1N L] =
[1N F ol i IREAWAR A = |
L LihES paahy <= "0
L 1 R E = # D6 = HOATH then
IS St [A 2 A 5 Aeaidentiall: —a
L1k 15 elsdl e = EAST then
[20 - dvive|[Heach Besch. Aegidentiall:
L 1R} = el D6 = WEEST ithen =
e iy =
B Nimer S0
Single-sepping =
'II I L3
Flmacly [Eappad o FEZACTLWHD: 114 [Ednctud e FL

The simulation is now stopped at a source file line that in-
cludes a call to a procedure named Drive. This procedure is
defined elsewhere in the module (at the top of the architec-
ture).

You can use the Step Over button at this point to continue to
the next line in the file, or use the Step Into button to cause the
simulation to enter the Drive procedure and stop at the first
line in that procedure.

Try setting other breakpoints in the source files and contibue
the simulation (using the Go button) to get a feel for source-
level debugging.

66

This tutorial has shown how source-level debugging can be
used to examine the execution of a VHDL design with more
precision than is possible using only waveforms. When you
combine source level-debugging with PeakVVHDL's waveform
display and export features, and the text 1/0 features of
VHDL, you have a powerful set of debugging tools at your
disposal.

Chapter 7: A First Look at VHDL

What Is VHDL?

This chapter will introduce you to VHDL and show you how
the language can be used to describe circuits for simulation
and synthesis. This chapter is not intended as a comprehen-
sive VHDL reference, but will give you enough information to
quickly get started using VHDL. Along the way, we will
suggest coding styles that are appropriate using a wide variety
of available synthesis and simulation tools, including
PeakVHDL.

During this introduction to VHDL, you will see some of the
many advantages of using VHDL for synthesis and simula-
tion.

VHDL is a programming language that has been designed and
optimized for describing the behavior of hardware digital
circuits and systems. As such, VHDL combines features of a
simulation modeling language, a design entry language, a test
language, and a netlist language.

67

Chapter 7: A First Look at VHDL

68

As a simulation modeling language, VHDL includes many
features appropriate for describing the behavior of electronic
components ranging from simple logic gates to complete
microprocessors and custom chips. Features of VHDL allow
electrical aspects of circuit behavior (such as rise and fall times
of signals, delays through gates, and functional operation) to
be precisely described. The resulting VHDL simulation models
can then be used as building blocks in larger circuits (using
schematics, block diagrams or system-level VHDL descrip-
tions) for the purpose of simulation.

Just as high-level programming languages allow complex
design concepts to be expressed as computer programs, VHDL
allows the behavior of complex electronic circuits to be cap-
tured into a design system for automatic circuit synthesis or
for system simulation. This process is called design entry, and
is the first step taken when a circuit concept is to be realized
using computer-aided design tools.

Design entry using VHDL is very much like software design
using a software programming language. Like Pascal, C and
C++, VHDL includes features useful for structured design
techniques, and offers a rich set of control and data representa-
tion features. Unlike these other programming languages,
VHDL provides features allowing concurrent events to be
described. This is important because the hardware being
described using VHDL is inherently concurrent in its opera-
tion. Users of PLD programming languages such as PALASM,
ABEL, CUPL and others will find the concurrent features of
VHDL quite familiar. Those who have only programmed
using software programming languages will have some new
concepts to grasp.

One area where hardware design differs from software design
is in the area of testing. One of the most important (and under-
utilized) aspects of VHDL is its use as a way to capture the
performance specification for a circuit, in the form of what is
commonly referred to as a test bench. Test benches are VHDL
descriptions of circuit stimulus and corresponding expected

A Brief History Of VHDL

outputs that verify the behavior of a circuit over time. Test
benches should be an integral part of any VHDL project and
should be created in parallel with other descriptions of the
circuit.

And, while VHDL is a powerful language with which to enter
new designs at a high level, it is also useful as a low-level
form of communication between different tools in a computer-
based design environment. VHDL’s structural language
features allow it to be effectively used as a netlist language,
replacing (or augmenting) other netlist languages such as
EDIF.

VHDL.: A Standard Language

One of the most compelling reasons for you to become experi-
enced with and knowledgeable in VHDL is its adoption as a
standard in the electronic design community. Using a standard
language such as VHDL virtually guarantees that you will not
have to throw away and recapture design concepts simply
because the design entry method you have chosen is not
supported in a newer generation of design tools. Using a
standard language also means that you are more likely to be
able to take advantage of the most up-to-date design tools and
that you will have access to a knowledge base of thousands of
other engineers, many of whom are solving problems similar
to your own.

A Brief History Of VHDL

VHDL (which stands for VHSIC hardware description lan-
guage) was developed in the early 1980s as a spin-off of a
high-speed integrated circuit research project funded by the
U.S. Department of Defense. During the VHSIC program,
researchers were confronted with the daunting task of describ-
ing circuits of enormous scale (for their time) and of managing
very large circuit design problems that involved multiple

69

Chapter 7: A First Look at VHDL

70

teams of engineers. With only gate-level design tools avail-
able, it soon became clear that better, more structured design
methods and tools would be needed.

IEEE Standard 1076

To meet this challenge, a team of engineers from three compa-
nies — IBM, Texas Instruments and Intermetrics — were
contracted by the Department of Defense to complete the
specification and implementation of a new, language-based
design description method. The first publicly available version
of VHDL, version 7.2, was released in 1985. In 1986, the Insti-
tute of Electrical and Electronics Engineers, Inc. (IEEE) was
presented with a proposal to standardize the language, which
it did in 1987 after substantial enhancements and modifica-
tions were made by a team of commercial, government and
academic representatives. The resulting standard, IEEE 1076-
1987, is the basis for virtually every VHDL simulation and
synthesis product sold today. An enhanced and updated
version of the language, IEEE 1076-1993, was released in 1994,
and VHDL tool vendors have been responding by adding
these new language features to their products.

IEEE Standard 1164

Although IEEE Standard 1076 defines the complete VHDL
language, there are aspects of the language that make it diffi-
cult to write completely portable design descriptions (descrip-
tions that can be simulated identically using different vendors’
tools). The problem stems from the fact that VHDL supports
many abstract data types, but it does not address the simple
problem of characterizing different signal strengths or com-
monly used simulation conditions such as unknowns and
high-impedance.

Soon after IEEE 1076-1987 was adopted, simulator companies
began enhancing VHDL with new signal types (typically
through the use of syntactically legal, but nhonstandard enu-
merated types) to allow their customers to accurately simulate
complex electronic circuits. This caused problems because

A Brief History Of VHDL

design descriptions entered using one simulator were often
incompatible with other simulation environments. VHDL was
guickly becoming a nonstandard.

To get around the problem of nonstandard data types, another
standard was created by an IEEE commitee. This standard,
numbered 1164, defines a standard package (a VHDL feature
that allows commonly used declarations to be collected into
an external library) containing definitions for a standard nine-
valued data type. This standard data type is called std_logic,
and the IEEE 1164 package is often referred to as the standard
logic package, or MVL9 (for multi-valued logic, nine values).

The IEEE 1076-1987 and IEEE 1164 standards together form
the complete VHDL standard in widest use today. (IEEE 1076-
1993 is slowly working its way into the VHDL mainstream,
but it does not add significant new features for synthesis
users.)

IEEE Standard 1076.3 (Numeric Standard)

Standard 1076.3 (often called the Numeric Standard or Synthe-
sis Standard) defines standard packages and interpretations
for VHDL data types as they relate to actual hardware. This
standard is intended to replace the many custom (nonstand-
ard) packages that vendors of synthesis tools have created and
distributed with their products.

IEEE Standard 1076.3 does for synthesis users what IEEE 1164
did for simulation users: increase the power of Standard 1076,
while at the same time ensuring compatibility between differ-
ent vendors tools. The 1076.3 standard includes, among other
things:

B A documented hardware interpretation of values belong-
ing to the bit and boolean types defined by IEEE Standard
1076, as well as interpretations of the std_ulogic type
defined by IEEE Standard 1164.

71

Chapter 7: A First Look at VHDL

72

B A function that provides “don’t care” or “wild card”
testing of values based on the std_ulogic type. This is of
particular use for synthesis, since it is often helpful to
express logic in terms of “don’t care” values.

B Definitions for standard signed and unsigned arithmetic
data types, along with arithmetic, shift, and type conver-
sion operations for those types.

|IEEE Standard 1076.4 (VITAL)

The annotation of timing information to a simulation model is
an important aspect of accurate digital simulation. The VHDL
1076 standard describes a variety of language features that can
be used for timing annotation; however, it does not describe a
standard method for expressing timing data outside of the
timing model itself.

The ability to separate the behavioral description of a simula-
tion model from the timing specifications is important for
many reasons. One of the major strengths of Verilog HDL
(VHDL's closest rival) is the fact that Verilog HDL includes a
feature specifically intended for timing annotation. This
feature, the Standard Delay Format, or SDF, allows timing data
to be expressed in a tabular form and included into the Verilog
timing model at the time of simulation.

The IEEE 1076.4 standard, published by the IEEE in late 1995,
adds this capability to VHDL as a standard package. A pri-
mary impetus behind this standard effort (which was dubbed
VITAL, for VHDL Initiative Toward ASIC Libraries) was to make
it easier for ASIC vendors and others to generate timing
models applicable to both VHDL and Verilog HDL. For this
reason, the underlying data formats of IEEE 1076.4 and
Verilog’s SDF are quite similar.

Learning VHDL

Learning VHDL

This chapter presents several sample circuits and shows how
they can be described for synthesis and testing. These small
examples are not intended to represent real applications, but
will help you to understand the relationships between various
types of VHDL statements and the actual hardware being
described.

In addition to the quick introduction to VHDL presented in
this chapter, there are some very important concepts that will
be introduced. Perhaps the most important concepts to under-
stand in VHDL, are those of concurrency and hierarchy. Since
these concepts are so important (and may be new to you), we
will introduce both concurrency and hierarchy in these initial
examples.

Before visiting these more complex topics. however, we will
first present a very simple example so you can see what
constitutes the minimum VHDL source file.

We’ll start this chapter off by looking at a very simple combi-
national circuit: an 8-bit comparator.

Our comparator will accept two 8-bit inputs, compare them,
and produce a 1-bit result (either 1, indicating a match, or 0,
indicating a difference between the two input values). A
comparator such as this is a combinational function con-
structed in circuitry from an arrangement of exclusive-OR
gates or from some other lower-level structure depending on
the capabilities of the target technology. (It is the job of logic
synthesis to determine exactly what hardware representation
is most appropriate for a given device.)

entity compare is
port (A,B: in bit;
EQ: out bit);
end compare;

architecture comparel of compare is
begin

73

Chapter 7: A First Look at VHDL

EQ <=‘1"when (A = B) else ‘0’;

end comparel;

Note: In this and other VHDL source files listed in this manual, VHDL
keywords are highlighted in bold face type.

Let’s look more closely at this source file. Reading from the
top, we see the following elements:

B An entity declaration that defines the inputs and outputs
— the ports — of this circuit; and

B An architecture declaration that defines what the circuit
actually does, using a single concurrent assignment.

Entities and Architectures

74

Every VHDL design description consists of at least one entity/
architecture pair. (In VHDL jargon, this combination of an
entity and its corresponding architecture is sometimes referred
to as a design entity.) In a large design, you will typically write
many entity/architecture pairs and connect them together to
form a complete circuit.

An entity declaration describes the circuit as it appears from the
“outside” - from the perspective of its input and output
interfaces. If you are familiar with schematics, you might
think of the entity declaration as being analogous to a block
symbol on a schematic.

The second part of a minimal VHDL design description is the
architecture declaration. Every entity in a VHDL design descrip-
tion must be bound with a corresponding architecture. The
architecture describes the actual function — or contents — of
the entity to which it is bound. Using the schematic as a

Entity Declaration

metaphor, you can think of the architecture as being roughly
analogous to a lower-level schematic pointed to by the higher-
level functional block symbol.

Entity Declaration

An entity declaration provides the complete interface for a
circuit. Using the information provided in an entity declara-
tion (the names, data types and direction of each port), you
have all the information you need to connect that portion of a
circuit into other, higher-level circuits, or to develop input
stimulus (in the form of a test bench) for testing purposes. The
actual operation of the circuit, however, is not included in the
entity declaration.

Let’s take a closer look at the entity declaration for this simple
design description:

entity compare is
port (A, B: in bit_vector(0 to 7);
EQ: out bit);
end compare;

The entity declaration includes a name, compare, and a port
declaration statement defining all the inputs and outputs of the
entity. The port list includes definitions of three ports: A, B,
and EQ. Each of these three ports is given a direction (either
in, out or inout), and a type (in this case either bit_vector(0 to
7), which specifies an 8-bit array, or bit, which represents a
single-bit value).

There are many different data types available in VHDL. To
simplify things in this introductory circuit, we’re going to stick
with the simplest data types in VHDL, which are bit and
bit_vector.

75

Chapter 7: A First Look at VHDL

Architecture Declaration

76

The second part of a minimal VHDL source file is the architec-
ture declaration. Every entity declaration you write must be
accompanied by at least one corresponding architecture.

Here’s the architecture declaration for the comparator circuit:

architecture comparel of compare is
begin

EQ <=‘1"when (A =B) else ‘0’;

end comparel;

The architecture declaration begins with a unique name,
comparel, followed by the name of the entity to which the
architecture is bound, in this case compare. Within the archi-
tecture declaration (between the begin and end keywords) is
found the actual functional description of our comparator.
There are many ways to describe combinational logic func-
tions in VHDL; the method used in this simple design descrip-
tion is a type of concurrent statement known as a conditional
assignment. This assignment specifies that the value of the
output (EQ) will be assigned a value of ‘1’ when A and B are
equal, and a value of ‘0’ when they differ.

This single concurrent assignment demonstrates the simplest
form of a VHDL architecture. As you will see, there are many
different types of concurrent statements available in VHDL,
allowing you to describe very complex architectures. Hierar-
chy and subprogram features of the language allow you to
include lower-level components, subroutines and functions in
your architectures, and a powerful statement known as a
process allows you to describe complex sequential logic as
well.

Data Types

Data Types

Like a high-level software programming language, VHDL
allows data to be represented in terms of high-level data types.
These data types can represent individual wires in a circuit, or
they can represent collections of wires using a concept called
an array.

The preceding description of the comparator circuit used the
data types bit and bit_vector for its inputs and outputs. The
bit data type has only two possible values: ‘1’ or ‘0’. (A
bit_vector is simply an array of bits.) Every data type in
VHDL has a defined set of values, and a defined set of valid
operations. Type checking is strict, so it is not possible, for
example, to directly assign the value of an integer data type to
a bit_vector data type. (There are ways to get around this
restriction, using what are called type conversion functions.
These are not discussed in this manual, but examples of their
use are provided in Appendix C, Examples Gallery.)

The following chart summarizes the fundamental data types
available in VHDL.

Data Type Values Example

Bit 1,'0 Q<=1;

Bit_vector (array of bits) DataOut <=“00010101";
Boolean True, False EQ <=True;

Integer -2,-1,0,1, 2,3,4,etc. Count<=Count+ 2;
Real 1.0, -1.0ES5, etc. V1=V2/5.3

Physical lua, 7 ns, 100 ps, etc. Q <='1"after 6 ns;
Record (various) Tvec := (CIKk, Inp, Result);
Character ‘a’,'b’, ‘2,'$’, etc. CharData <="X’;

String (Array of characters) Msg <=“MEM:* & Addr

77

Chapter 7: A First Look at VHDL

Design Units

Figure 7-1: VHDL
includes five types of
design units:
configurations,
packages, package
bodies, entities and
architectures.

78

One concept unique to VHDL (when compared to software
programming languages and to its main rival, Verilog HDL) is
the concept of a design unit. Design units in VHDL (which
may also be referred to as library units) are segments of VHDL
code that can be compiled separately and stored in a library.
You have been introduced to two design units already: the
entity and the architecture. There are actually five types of
design units in VHDL,; entities, architectures, packages, pack-
age bodies, and configurations.

Figure 7-1 illustrates the relationship between these five
design units:

Configuration
(or default config.)

Package

Package Body

Entity

Architecture(s) —"‘

Design Units

Entities

A VHDL entity is a statement (indicated by the entity key-
word) that defines the external specification of a circuit or sub-
circuit. The minimum VHDL design description must include
at least one entity and one corresponding architecture.

When you write an entity declaration, you must provide a
unique name for that entity and a port list defining the input
and output ports of the circuit. Each port in the port list must
be given a name, direction (or mode, in VHDL jargon) and a
type. Optionally, you may also include a special type of pa-
rameter list (called a generic list) that allows you to pass addi-
tional information into an entity.

Architectures

A VHDL architecture declaration is a statement (beginning
with the architecture keyword) that describes the underlying
function and/or structure of a circuit. Each architecture in
your designh must be associated (or bound) by name with one
entity in the design.

VHDL allows you to create more than one alternate architec-
ture for each entity. This feature is particularly useful for
simulation and for project team environments in which the
design of the system interfaces (expressed as entities) is done
by a different engineer than the lower-level architectural
description of each component circuit.

An architecture declaration consists of zero or more declara-
tions (of items such as intermediate signals, components that
will be referenced in the architecture, local functions and
procedures, and constants) followed by a begin statement, a
series of concurrent statements, and an end statement.

Packages and Package Bodies

A VHDL package declaration is identified by the package
keyword, and is used to collect commonly-used declarations
for use globally among different design units. You can think of

79

Chapter 7: A First Look at VHDL

80

a package as a common storage area, one used to store such
things as type declarations, constants, and global subpro-
grams. Items defined within a package can be made visible to
any other design unit in the complete VHDL design, and they
can be compiled into libraries for later re-use.

A package can consist of two basic parts: a package declara-
tion and an optional package body. Package declarations can
contain the following types of statements:

B Type and subtype declarations
Constant declarations

Global signal declarations

Function and procedure declarations
Attribute specifications

File declarations

Component declarations

Alias declarations

Disconnect specifications
B Use clauses

Items appearing within a package declaration can be made
visible to other design units through the use of a use state-
ment, as we will see.

If the package contains declarations of subprograms (functions
or procedures) or defines one or more deferred constants
(constants whose value is not immediately given), then a
package body is required in addition to the package declaration.
A package body (which is specified using the package body
keyword combination) must have the same name as its
corresponding package declaration, but it can be located
anywhere in the design (it does not have to be located imme-
diately after the package declaration).

Levels of Abstraction (Styles)

The relationship between a package and package body is
somewhat akin to the relationship between an entity and its
corresponding architecture. (There may be only one package
body written for each package declaration, however.) While
the package declaration provides the information needed to
use the items defined within it (the parameter list for a global
procedure, or the name of a defined type or subtype), the
actual behavior of such things as procedures and functions
must be specified within package bodies.

Examples of global procedures and functions can be found in
Appendix C, Examples Gallery.

Configurations

The final type of design unit available in VHDL is called a
configuration declaration. You can think of a configuration
declaration as being roughly analogous to a parts list for your
design. A configuration declaration (identified with the con-
figuration keyword) specifies which architectures are to be
bound to which entities, and it allows you to change how
components are connected in your design description at the
time of simulation or synthesis.

Configuration declarations are always optional, no matter
how complex a design description you create. In the absence
of a configuration declaration, the VHDL standard specifies a
set of rules that provide you with a default configuration. For
example, in the case where you have provided more than one
architecture for an entity, the last architecture compiled will
take precedence and will be bound to the entity.

Levels of Abstraction (Styles)

VHDL supports many possible styles of design description.
These styles differ primarily in how closely they relate to the
underlying hardware. When we speak of the different styles of

81

Chapter 7: A First Look at VHDL

Figure 7-2: VHDL
allows you to describe a
system at many levels of
abstraction.

82

Performance Specifications A
Behavior Test Benches
Sequential Descriptions
State Machines
Register Transfers

Dataflow Selected Assignments
Arithmetic Operations
Boolean Equations
Structure Hierarchy
Physical Information Level of
Abstraction

VHDL, we are really talking about the differing levels of
abstraction possible using the language — behavior, dataflow,
and structure — as shown in Figure 7-2:

This figure maps the various points in a top-down design
process to the three general levels of abstraction. Starting at
the top, suppose the performance specifications for a given
project are: “the compressed data coming out of the DSP chip
needs to be analyzed and stored within 70 nanoseconds of the
Strobe signal being asserted...” This human language specifi-
cation must be refined into a description that can actually be
simulated. A test bench written in combination with a sequen-
tial description is one such expression of the design. These are
all points in the behavior level of abstraction.

After this initial simulation, the design must be further refined
until the description is something a VHDL synthesis tool can
digest. That is the dataflow level of abstraction.

The structure level of abstraction occurs when smaller seg-
ments of circuitry are being connected together to form a
larger circuit. The structure level is what we commonly think
of as a circuit netlist, or perhaps a higher-level block diagram.

Levels of Abstraction (Styles)

Behavior

The highest level of abstraction supported in VHDL is called
the behavior level of abstraction. When creating a behavioral
description of a circuit, you will describe your circuit in terms
of its operation over time. The concept of time is the critical
distinction between behavioral descriptions of circuits and
lower-level descriptions (specifically descriptions created at
the dataflow level of abstraction).

In a behavioral description, the concept of time may be ex-
pressed precisely, with actual delays between related events
(such as the propagation delays within gates and on wires), or
it may simply be an ordering of operations that are expressed
sequentially (such as in a functional description of a flip-flop).
When you are writing VHDL for input to synthesis tools, you
may use behavioral statements in VHDL to imply that there
are registers in your circuit. It is unlikely, however, that your
synthesis tool will be capable of creating precisely the same
behavior in actual circuitry as you have defined in the lan-
guage. (Synthesis tools today ignore detailed timing specifica-
tions, leaving the actual timing results at the mercy of the
target device technology.)

If you are familiar with event-driven software programming,
writing behavior-level VHDL will not seem like anything new.
Just like a programming language, you will be writing one or
more small programs that operate sequentially and communi-
cate with one another through their interfaces. The only
difference between behavior-level VHDL and a software
programming language is the underlying execution platform:
in the case of software, it is some operating system running on
a CPU; in the case of VHDL, it is the simulator.

Dataflow

The dataflow level of abstraction is familiar to most digital
circuit designers. In the dataflow level of abstraction, you
describe your circuit in terms of how data moves through the
system. At the heart of most digital systems today are regis-

83

Chapter 7: A First Look at VHDL

Sample Circuit

ters, so in the dataflow level of abstraction you describe how
information is passed between registers in the circuit. You will
probably describe the combinational logic portion of your
circuit at a relatively high level (and let a synthesis tool figure
out the detailed implementation in logic gates), but you will
likely be quite specific about the placement and operation of
registers in the complete circuit.

Structure

The third level of abstraction, structure, is used to describe a
circuit in terms of its components. Structure can be used to
create a very low-level description of a circuit (such as a
transistor-level description) or a very high-level description
(such as a block diagram).

In a gate-level description of a circuit, for example, compo-
nents such as basic logic gates and flip-flops might be con-
nected in some logical structure to create the circuit. This is
what is often called a netlist. For a higher-level circuit — one
in which the components being connected are larger func-
tional blocks — structure might simply be used to segment the
design description into manageable parts.

Structure-level VHDL features such as components and
configurations are very useful for managing complexity. The
use of components can dramatically improve your ability to
reuse elements of your designs, and they can make it possible
to work using a top-down design approach.

84

To help demonstrate some of the important concepts we have
covered in the first of this chapter, we will present a very
simple circuit and show how the function of this circuit can be
described in VHDL. The design descriptions we will show are
intended for synthesis and therefore do not include timing
specifications or other information not directly applicable to
today’s synthesis tools.

Sample Circuit

Figure 7-3: The sample Init[8]
circuit includes an 8-bit Data Q
shifter and a comparator. Load
Load
Clk Clk
p Rst
Rst |
A ..
Limit
EQ ————
Test[8] 5

The circuit we will be looking at combines the comparator
circuit presented earlier with a simple 8-bit loadable shift
register. The shift register will allow us to examine in detail
how behavior-level VHDL can be written for synthesis.

The two subcircuits (the shifter and comparator) will be
connected using VHDL’s hierarchy features and will demon-
strate the third level of abstraction: structure. The complete
circuit is shown in Figure 7-3.

This diagram has been intentionally drawn to look like a
hierarchical schematic with each of the lower-level circuits
represented as blocks. In fact, many of the concepts we will
cover during the development of this circuit are the same
concepts familiar to users of schematic hierarchy. These con-
cepts include the ideas of component instantiation, mapping
of ports, and design partitioning.

In a more structured project environment, you would probably
enter a circuit such as this by first defining the interface
requirements of each block, then describing the overall design
of the circuit as a collection of blocks connected together
through hierarchy at the top level. Later, after the system
interfaces had been designed, you would proceed down the
hierarchy (using a top-down approach to design) and fill in
the details of each subcircuit.

85

Chapter 7: A First Look at VHDL

In this example, however, we will begin by describing each of
the lower-level blocks first and then connect them to form the
complete circuit.

Comparator (Dataflow)

86

The comparator portion of the design will be identical to the
simple 8-bit comparator we have already seen. The only
difference is that we will use the IEEE 1164 standard logic data
types (std_ulogic and std_ulogic_vector) rather than the bit
and bit_vector data types used previously. Using standard
logic data types for all system interfaces is highly recom-
mended, as it allows circuit elements from different sources to
be easily combined. It also provides you the opportunity to
perform more detailed and precise simulation than would
otherwise be possible.

The updated comparator design, using the IEEE 1164 standard
logic data types, is shown below:

-- Eight-bit comparator

library ieee;
use ieee.std_logic_1164.all;
entity compare is
port (A, B: in std_ulogic_vector(0 to 7);
EQ: out std_ulogic);
end compare;

architecture comparel of compare is
begin

EQ <='1"when (A =B) else ‘0
end comparel;

Let’s take a closer look at this simple VHDL design descrip-
tion. Reading from the top of the source file, we see:

Comparator (Dataflow)

a comment field, indicated by the leading
double-dash symbol (“--""). VHDL allows
comments to be embedded anywhere in your
source file, provided they are prefaced by the
two hyphen characters as shown. Comments in
VHDL extend from the double hyphen symbol
to the end of the current line. (There is no block
comment facility in VHDL.)

a library statement that causes the named library IEEE
to be loaded into the current compile session. When
you use VHDL libraries, it is recommended that you
include your library statements once at the beginning
of the source file, before any use clauses or other
VHDL statements.

a use clause, specifying which items from the IEEE
library are to be made visible for the subsequent
design unit (the entity and its corresponding architec-
ture). The general form of a use statement includes
three fields delimited by a period: the library name (in
this case ieee), a design unit within the library (nor-
mally a package, in this case named std_logic_1164),
and the specific item within that design unit (or, as in
this case, the special keyword all, which means every-
thing) to be made visible.

an entity declaration describing the interface to the
comparator. Note that we have now specified
std_ulogic and std_ulogic_vector, which are standard
data types provided in the IEEE 1164 standard and in
the associated IEEE library:.

an architecture declaration describing the actual func-
tion of the comparator circuit.

87

Chapter 7: A First Look at VHDL

88

Conditional Signal Assignment

The function of the comparator is defined using a simple
concurrent assignment to port EQ. The type of statement used
in the assignment to EQ is called a conditional signal assign-
ment. Conditional signal assignments make use of the when-
else language feature and allow complex conditional logic to
be described. The following description of a multiplexer
circuit makes the use of the conditional signal assignment
more clear:

architecture mux1 of mux is
begin

Y <= Awhen (Sel =“00") else
B when (Sel =“01") else
C when (Sel =“10") else
D when (Sel = “11");

end mux1;

Selected Signal Assignment

This form of signal assignment can be used as an alternative to
the conditional signal assignment. The selected signal assign-
ment has the following general form (again, using a multi-
plexer as an example):

architecture mux2 of mux is
begin

with Sel select
Y <= A when “00",
B when “01”,
C when “107,
D when “11”;

end mux2;

Barrel Shifter (Entity)

Choosing between a conditional or selected signal assignment
for circuits such as this is largely a matter of taste. For most
designs, there is no difference in the results obtained with
either type of assignment statement.

Barrel Shifter (Entity)

The second and most complex part of this design is the barrel
shifter circuit. This circuit (diagrammed below) accepts 8-bit
input data, loads this data into a register and, when the load
input signal is low, rotates this data by one bit with each rising
edge clock signal. The circuit is provided with an asynchro-
nous reset, and the data stored in the register is accessible via
the output signal Q.

They are many ways to describe a circuit such as this in
VHDL. If you are going to use synthesis tools to process the
design description into an actual device technology, however,
you must restrict yourself to well established synthesis con-
ventions when entering the circuit. We will examine two of
these conventions when entering this design.

Using a Process

The first design description that we will look at for this shifter
is a description that uses a VHDL process statement to de-
scribe the behavior of the entire circuit over time. This is the
behavioral level of abstraction. It represents the highest level
of abstraction practical (and synthesizable) for registered
circuits such as this one. The VHDL source code for the barrel
shifter is shown below:

-- Eight-bit barrel shifter

library ieee;
use ieee.std_logic_1164.all;

89

Chapter 7: A First Look at VHDL

entity rotate is
port (Clk, Rst, Load: in std_ulogic;
Data: in std_ulogic_vector(0 to 7);
Q: out std_ulogic_vector(0 to 7));
end rotate;

architecture rotatel of rotate is
begin
reg: process (Rst,CIk)
variable Qreg: std_ulogic_vector(0 to 7);
begin
if Rst='1"then -- Async reset
Qreg :=“000000007;
elsif (Clk =1’ and Clk’'event) then
if (Load ='1") then

Qreg := Data;
else
Qreg := Qreg(1 to 7) & Qreg(0);
end if ;
end if ;
Q <=Qreg;

end process ;
end rotatel;

Let’s look closely at this source file. Reading from the top, we
see:

B acomment field, as described previously.

library and use statements, allowing us to use the IEEE
1164 standard logic data types.

B an entity declaration defining the interface to the
circuit. Note that the direction (mode) of Q is written
as out, indicating that it will not be used directly as the
lower-level storage object (Q will not be fed back
directly.).

B an architecture declaration, consisting of a single
process statement that defines the operation of the
shifter over time in response to events appearing on
the clock (Clk) and asynchronous reset (Rst).

90

Barrel Shifter (Entity)

Process Statement

The process statement in VHDL is the primary means by
which sequential operations (such as registered circuits) can
be described. When describing registered circuits, the most
common form of a process statement is:

architecture arch_name of ent_name is
begin
process_name: process(sensitivity _list)
local_declaration;
local_declaration;

begin
sequential statement;
sequential statement;
sequential statement;

end process ;
end arch_name;

A process statement consists of the following items:

An optional process name (an identifier followed by a
colon character).

The process keyword.

An optional sensitivity list, indicating which signals
result in the process “executing” when there is some
event detected. (The sensitivity list is required if the
process does not include one or more wait statements
to suspend its execution at certain points. We will look
at examples that do not use a sensitivity list later on in
this chapter).

An optional declarations section, allowing local objects
and subprograms to be defined.

91

Chapter 7: A First Look at VHDL

92

A begin keyword.

A sequence of statements to be executed when the
program runs.

B an end statement.

The easiest way to think of a VHDL process such as this is to
relate it to software, as a program that executes (in simulation)
any time there is an event on one of its inputs (as specified in
the sensitivity list). A process describes the sequential execu-
tion of statements that are dependent on one or more events
occurring. A flip-flop is a perfect example of such a situation;
it remains idle, not changing state, until there is a significant
event (either a rising edge on the clock input or an asynchro-
nous reset event) that causes it to operate and potentially
change its state.

Although there is a definite order of operations within a
process (from top to bottom), you can think of a process as
executing in zero time. This means that (a) a process can be
used to describe circuits functionally, without regard to their
actual timing, and (b) multiple processes can be “executed” in
parallel with little or no concern for which processes complete
their operations first. (There are certain caveats to this behav-
ior of VHDL processes. These caveats are described in detail in
most VHDL textbooks.

Let’s see how the process for our barrel shifter operates. For
your reference, the process is shown below:

reg: process (Rst,CIk)
variable Qreg: std_ulogic_vector(0 to 7);
begin
if Rst ='1"then -- Async reset
Qreg := “00000000";
elsif (Clk =1’ and Clk’event) then
if (Load ='1") then
Qreg := Data;
else

Barrel Shifter (Entity)

Qreg := Qreg(1 to 7) & Qreg(0);
end if ;
end if ;

Q <= Qreg;

end process ;

As written, the process is dependent on (or sensitive to) the
asynchronous inputs Rst and CIk. These are the only signals
that can have events directly affecting the operation of the
circuit; in the absence of any event on either of these signals,
the circuit described by the process will simply hold its cur-
rent value (that is, the process will remain suspended).

Now let’s examine what happens when an event occurs on
either one of these asynchronous inputs. First, consider what
happens when the input Rst has an event in which it transi-
tions to a high state (represented by the std_ulogic value of
‘1"). In this case, the process will begin execution and the first
if statement will be evaluated. Because the event was a transi-
tion to ‘1°, the simulator will see that the specified condition
(Rst =‘1") is true and the assignment of variable Qreg to the
reset value of “00000000” will be performed. The remaining
statements of the if-then-elsif expression (those that are
dependent on the elsif condition) will be ignored. The final
statement in the process, the assignment of output signal Q to
the value of Qreg, is not subject to the if-then-elsif expression
and is therefore placed on the process queue for execution.
(signal assignments do not occur until the process actually
suspends.) Finally, the process suspends, all signals that were
assigned values in the process (in this case Q) are updated,
and the process waits for another event on CIk or Rst.

What about the case in which there is an event on CIK? In this
case, the process will again execute, and the if-then-elsif
expressions will be evaluated in turn until a valid condition is
encountered. If the Rst input continues to have a high value (a
value of ‘1"), then the simulator will evaluate the first if test as
true, and the reset condition will take priority. If, however, the
Rst input is not a value of ‘1, then the next expression (Clk =

93

Chapter 7: A First Look at VHDL

‘1’ and Clk’event) will be evaluated. This expression is the
most commonly-used convention for detecting clock edges in
VHDL. To detect a rising edge clock, we write the expression
Clk = ‘1’ in the conditional expression, just as we did when
detecting a reset condition. For this circuit, however, the
expression Clk = ‘1’ would not be specific enough, since the
process may have begun execution as the result of an event on
Rst that did not result in Rst transitioning to a ‘1. (For ex-
ample, a falling edge event on Rst — that is, a transition from
1 to 0 — would trigger the process but cause it to skip to the
elsif statement even though there was no event on CIK, since
the Rst = 1 condition would evaluate as false.) To ensure that
the event we are responding to is in fact an event on CIk, we
use the built-in VHDL attribute ‘event to check if Clk was that
signal triggering the process execution.

If the event that triggered the process execution was in fact a
rising edge on CIk, then the simulator will go on to check the
remaining if-then logic to determine which assignment
statement is to be executed. If Load is determined to be ‘1’,
then the first assignment statement is executed and the data is
loaded from input Data to the registers. If Load is not ‘1’, then
the data in the registers is shifted, as specified using the bit
slice and concatenation operations available in the language.

Confusing? Perhaps; but if you simply use the style just
presented as a template for describing registered logic and
don’t worry too much about the details of how it is executed
during simulation, you won’t have much trouble. Just keep in
mind that every assignment to a variable or signal you make
that is dependent on a Clk = ‘1’ and Clk’event expression will
result in at least one register when synthesized.

Signals and Variables

There are two fundamental types of objects used to carry data
from place to place in a VHDL design description: signals and
variables. In virtually all cases, you will want to use variables

94

Using a Procedure

to carry data between sequential operations (within processes,
procedures and functions) and use signals to carry informa-
tion between concurrent elements of your design (such as
between two independent processes).

Examples of signals and variables, and differences between
them, are shown in more detail in Appendix C, Examples
Gallery. For now, it is useful to think of signals as wires (as in a
schematic) and variables as temporary storage areas (similar
to variables in a traditional software programming language).

In many cases, you can choose whether to use signals or
variables to perform the same task. As a general rule, you
should use variables whenever possible and use signals only
when you must access data across different concurrent parts of
your design.

Using a Procedure

As we have seen from the first version of the barrel shifter,
describing registered logic using processes requires that you
follow some established conventions (if you intend to synthe-
size the design) and to consider the behavior of the entire
circuit. In the barrel shifter design description previously
shown, the registers were implied by the placement and use of
statements such as if Clk = ‘1’ and Clk’event. Assignment
statements subject to that clause resulted in D-type flip-flops
being implied for the signals.

For smaller circuits, this mixing of combinational logic func-
tions and registers is fine and not difficult to understand. For
larger circuits, however, the complexity of the system being
described can make such descriptions hard to manage, and the
results of synthesis can often be confusing. For these circuits, it
often makes more sense to retreat to a dataflow level of ab-
straction and to clearly define the boundaries between regis-
tered and combinational logic.

95

Chapter 7: A First Look at VHDL

96

One easy way to do this is to remove the process from your
design and replace it with a series of concurrent statements
representing the combinational and registered portions of the
circuit. The following VHDL design description uses this
method to describe the same barrel shifter circuit previously
described:

architecture rotate3 of rotate is
signal D,Qreg: std_logic_vector(0 to 7);
begin

D <= Data when (Load ='1") else
Qreg(1to 7) & Qreg(0);

dff(Rst, Clk, D, Qreg);
Q <=Qreg;

end rotate3;

In this version of the design description, the behavior of the
D-type flip-flop has been placed in an external procedure,
dff(), and intermediate signals have been introduced to more
clearly describe the separation between the combinational and
registered parts of the circuit. Figure 7-4 helps illustrate this
separation:

In this example, the combinational logic of the counter has
been written in the form of a single concurrent signal assign-
ment, while the registered operation of the counter’s output
has been described using a call to a procedure named dff.

What does the dff procedure look like? The following is one
possible procedure for a D-type flip-flop:

Figure 7-4: Using a
data flow level of
abstraction can help
simplify a design.Figure
10-1:

Using a Procedure

Inputs Logic Registers Outputs
|_ D Qreg | IN_©

Data ‘ l/

Load >

Clk r

Rst

procedure dff (signal Rst, Clk: in std_ulogic;
signal D:in std_ulogic_vector(0 to 7);
signal Q: out std_ulogic_vector(0 to 7)) is
begin
if Rst="1"then
Q <="000000007;
elsif Clk = ‘1’ and Clk'event then
Q<=D;
end if;
end dff;

Notice that this procedure has a striking resemblance to the
process statement presented earlier. The same if-then-elsif
structure used in the process is used to describe the behavior
of the registers. Instead of a sensitivity list, however, the
procedure has a parameter list describing the inputs and
outputs of the procedure.

The parameters defined within a procedure or function defini-
tion are called its formal parameters. When the procedure or
function is executed in simulation, the formal parameters are
replaced by the values of the actual parameters specified when
the procedure or function is used. If the actual parameters
being passed into the procedure or function are signal objects,
then the signal keyword can be used (as shown above) to
ensure that all information about the signal object, including
its value and all of its attributes, is passed into the procedure
or function.

97

Chapter 7: A First Look at VHDL

Structural VHDL

Design Hierarchy

The structure level of abstraction is used to combine multiple
components to form a larger circuit or system. As such, struc-
ture can be used to help manage a large and complex design,
and structure can make it possible to reuse components of a
system in other design projects.

Because structure only defines the interconnections between
components, it cannot be used to completely describe the
function of a circuit; at some level, all aspects of your circuit
must be described using behavioral and/or dataflow levels of
abstraction.

To demonstrate how the structure level of abstraction can be
used to connect lower-level circuit elements into a larger
circuit, we will connect the comparator and shift register
circuits into a larger circuit as shown in Figure 7-5.

Notice that we have drawn this diagram in much the same
way you might enter it into a schematic capture system.
Structural VHDL has many similarities with schematic-based
design, as we will see.

98

When you write structural VHDL, you are in essence writing a
textual description of a schematic netlist (a description of how
the components on the schematic are connected by wires, or
nets). In the world of schematic entry tools, such netlists are
usually created for you automatically by the schematic editor.
When writing VHDL, you enter the same sort of information
by hand.

When you use components and wires (signals, in VHDL) to
connect multiple circuit elements together, it is useful to think
of your new, larger circuit in terms of a hierarchy of compo-

Figure 7-5: The shifter
and comparator are
connected to form a
larger system.

Figure 7-6: The
hierarchy of a design can
be represented as a tree
structure.

Design Hierarchy

Init[8] a2 O
Load Load
Ck > Clk
Rst
: A oL
: S Limit
Test[8] B

nents. In this view, the top-level drawing (or top-level VHDL
entity and architecture) can be seen as the highest level in a
hierarchy tree, as shown in Figure 7-6.

library ieee;

use ieee.std_logic_1164.all;

entity rotcomp is port(Clk, Rst, Load: in std_ulogic;
Init: in std_ulogic_vector(0 to 7);
Test: in std_ulogic_vector(0 to 7);
Limit: out std_ulogic);

end rotcomp;

architecture structure of rotcomp is
component compare

port (A, B: in std_ulogic_vector(0 to 7); EQ: out std_ulogic);
end component ;

ROTCOMP

ROTATE COMPARE

99

Chapter 7: A First Look at VHDL

component rotate
port (Clk, Rst, Load: in std_ulogic;
Data: in std_ulogic_vector(0 to 7);
Q: out std_ulogic_vector(0 to 7));
end component ;

signal Q: std_ulogic_vector(0 to 7);
begin
COMP1: compare port map (A=>Q, B=>Test, EQ=>Limit);
ROT1: rotate port map (Clk=>Clk, Rst=>Rst, Load=>Load, Data=>Init,
Q=>Q);

end structure;

Test Benches

At this point, our sample circuit is complete and ready to be
processed by synthesis tools. Before processing the design,
however, we should take the time to verify that it actually
does what it is intended to do. We should run a simulation.

Simulating a circuit such as this one requires that we provide
more than just the design description itself. To verify the
proper operation of the circuit over time in response to input
stimulus, we will need to write a test bench.

The easiest way to understand the concept of a test bench is to
think of it as a virtual tester circuit. This tester circuit, which
you will describe in VHDL, applies stimulus to your design
description and (optionally) verifies that the simulated circuit
does what it is intended to do.

Figure 7-7 graphically illustrates the relationship between the
test bench and your design description, which is called the
unit under test, or UUT.

100

Figure 7-7: The test
bench forms a “virtual
circuit” surrounding
your design to be tested.

Test Benches

Data Q

Load
Test | Apply - Check
Bench | Stimulus R Results

EQ

Unit Under Test

To apply stimulus to your design, your test bench will prob-
ably be written using one or more sequential processes, and it
will use a series of signal assignments and wait statements to
describe the actual stimulus. You will probably use VHDL's
looping features to simplify the description of repetitive
stimulus (such as the system clock), and you may also use
VHDL's file and record features to apply stimulus in the form
of test vectors.

To check the results of simulation, you will probably make use
of VHDL'’s assert feature, and you may also use the file fea-
tures to write the simulation results to a disk file for later
analysis.

For complex design descriptions, developing a comprehensive
test bench can be a large-scale project in itself. In fact, it is not
unusual for the test bench to be larger and more complex than
the design description. For this reason, you should plan your
project so that you have the time required to develop the
function test in addition to developing the circuit being tested.
You should also plan to create test benches that are re-usable,
perhaps by developing a master test bench that reads test data
from a file.

101

Chapter 7: A First Look at VHDL

When you create a test bench for your design, you use the
structural level of abstraction to connect your lower-level
(previously top-level) design description to the other parts of
the test bench.

Sample Test Bench

102

The following VHDL source statements describe a simple test
bench for the shift and compare circuit. This test bench uses
two processes that operate concurrently. One process (clock)
describes a background clock with a 100 ns period, while the
second process (stimulus) describes a sequence of inputs to be
applied to the circuit over time. Note that this sample test
bench does not include any checking of output values. More
complex test benches that include output value checking are
presented in Appendix C, Examples Gallery.

library ieee;
use ieee.std_logic_1164.all;

entity testbnch is -- No ports needed in a
end testbnch; -- testbench

architecture behavior of testbnch is
component rotcomp is -- Declares the lower-level
port (Clk, Rst, Load: in std_ulogic; -- component and its ports
Init: in std_ulogic_vector(0 to 7);
Test: in std_ulogic_vector(0 to 7);
Limit: out std_ulogic);
end component ;

signal CIk, Rst, Load: std_ulogic; -- Introduces top-level signals
signal Init: std_ulogic_vector(0 to 7); -- to use when testing the
signal Test: std_ulogic_vector(0 to 7); -- lower-level circuit
signal Limit: std_ulogic;

begin

Conclusion

DUT: rotcomp port map

(Clk, Rst, Load, Init, Test, Limit);

clock: process

variable clktmp: std_ulogic :=‘0’;

begin

clktmp := not clktmp;
Clk <= clktmp;
wait for 50 ns;

end process ;

stimulus: process
begin

Rst<='0";

Load <=‘1";

Init <= “00001111";
Test <= “11110000";
wait for 100 ns;
Load <=‘0";

wait for 600 ns;

end process ;

end behavior;

Conclusion

-- Creates an instance of the
-- lower-level circuit (the
-- design under test)

-- This process sets up a
-- background clock of 100 ns
-- period.

-- This process applies

-- stimulus to the design

-- inputs, then waits for some
-- amount of time so we can

-- observe the results during

-- simulation.

In this chapter we have explored the most important concepts
and features of VHDL. VHDL is a rich and powerful language,
however, and there is much more to learn before you become a
“master user”. To continue your learning, it is strongly recom-
mended that you acquire at least one textbook on VHDL, and
also obtain a copy of the IEEE 1076 VHDL Language Reference
Manual. There are also many good quality VHDL training
courses and multimedia training products available. Contact
Accolade Design Automation, or visit our Web page at
www.acc-eda.com for more information.

103

Chapter 7: A First Look at VHDL

You will also find it useful to study, copy and modify existing
VHDL design examples. Appendix C of this manual includes
listings and descriptions of a variety of sample designs, and
additional examples are provided on your PeakVHDL installa-
tion CD-ROM.

104

Chapter 8: Using PeakLIB

PeakLIB is a utility that you can use to create PeakVHDL
libraries and add or delete references to compiled VHDL
modaules (in the form of .AN files) from within existing library
files.

PeakLIB Overview

PeakLIB is a DOS (command line) application that has been
provided for PeakVHDL library creation and maintenance.

Why do you need PeakLIB? PeakVHDL library files (.LIB files)
are created for you automatically when you specify a library
name in the Compile Options dialog and compile a VHDL
source file from within PeakVHDL. (If you have not specified
a library file, the default library name of WORK is assumed.)
This method of automatically creating libraries is fine for most
projects, and is quite convenient because it allows you to
associate library names with VHDL source files and have
them automatically compiled into the correct library every
time.

There are a few limitations inherent in creating libraries from
within PeakVHDL, however:

105

Chapter 8: Using PeakLIB

1.

PeakVHDL includes path (drive and directory) informa-
tion in .LIB files that it generates. This makes it impossible
to move existing projects to different drives or directories
without recompiling the project, and makes library files
essentially non-portable.

PeakVHDL does not provide any way to move existing
AN files from one library to another without recompiling
the VHDL source file. In some cases (such as when you
have purchased proprietary simulation models) you might
not have access to the original VHDL source code.

PeakVHDL does not provide any way to remove a library
entry from an existing library. For example, you may need
to remove and replace entries in the IEEE library provided
with PeakVHDL if you are using other VHDL tools that
have specific requirements for IEEE library contents.

Examining the Contents of a Library File

PeakVHDL library files (.LIB files) are ASCII text files (with

the

exception of the first two characters in the file) and can be

examing using any text editor, including the text editor pro-
vided in PeakVHDL. Each line of the library file includes a
reference to a specific design unit located in the library and a
corresponding reference to a compiled VHDL source file (an
AN file). The information in the library file is used by the
PeakVHDL analyzer and elaborator (during the compile and
link processes) to locate and use externally-referenced design
units such as packages, components and lower-level entities.

Adding a .AN File to a Library

You can use PeakLIB to add an existing .AN file (compiled
VHDL module) to a library file. If the library file name you
specify does not already exist, it will be created.

106

Deleting a .AN File Reference From a Library

To add an object file to a library or to create a new library,
open a DOS window and type the command:

\ACC-EDA\PEAKLIB.EXE libname.LIB filename.AN

where libname is the name of the library (such as IEEE.LIB),
and while filename is the name of an object file (such as
NUM_STD.AN).

Deleting a .AN File Reference From a Library

To delete object files from a library, use the -D command, as in:

\ACC-EDA\PEAKLIB.EXE -D libname.LIB filename.AN

The reference to the .AN file will be removed from the library
file.

107

108

Appendix A: Support Services

Learning More About VHDL

Although PeakVHDL has been designed to be as easy to use
as possible, you will need to spend some time learning about
VHDL before you are able to take full advantage of the lan-
guage and the PeakVHDL product.

To gain knowledge and experience with VHDL, Accolade
Design Automation strongly recommends that you purchase
one or more VHDL textbooks, including the IEEE Standard
1076 Language Reference Manual available from the IEEE, phone
(800) 678-4333.

A list of recommended VHDL textbooks and training re-
sources can be found on the Accolade Web Site at the follow-
ing URL: http://www.acc-eda.com. Textbooks and interactive
computer-based training materials are also available direct
from Accolade Design Automation. The Accolade Design
Automation Web site also includes an on-line introduction to
VHDL, as well as pointers to other VHDL-related sites and
resources.

109

Appendix A: Support Services

Obtaining Product Assistance

Reporting Bugs

If you require assistance with the installation or use of
PeakVHDL, you should first visit the Accolade Design Auto-
mation Web site at URL http://www.peakvhdl.com. The
Frequently Asked Questions section of the Product Support
Page contains detailed answers to the most common ques-
tions. You will also have the opportunity to download patches
and other files that may help to solve problems that you are
having.

If you are unable to get the answers you need from the Web
Site, you should contact your Accolade Design Automation
Authorized Reseller. Your Authorized Reseller can provide the
guickest response to questions related to installation and
general use of the product.

If your question involves specific VHDL features, or can be
best illustrated with a sample VHDL file, please send that file
(or files) along with a detailed description to the following
email address: support@peakvhdl.com. Isolating the problem
to as small a VHDL source file as possible will help to speed
the investigation.

In most cases, you will receive a detailed response to your
emailed question within 24 hours.

110

If you find what appears to be a bug in the product (such as an
incompatibility with other VHDL products, or unusual prod-
uct behavior), you should first check the Web Site at URL
http://mww.peakvhdl.com to see if a workaround has been
described in the Frequently Asked Questions Page. Your
Accolade Design Automation Authorized Reseller can also
provide this information, and may be able to suggest
workarounds or provide updated software.

Appendix A: Support Services

Bug reports and feature requests are welcome via email or
FAX; send your reports and requests, along with a detailed
description of the problem or requested feature (please in-
clude an example, if possible) to:

Email:

support@peakvhdl.com
FAX:

(425) 739-2163
Postal Mail:

Accolade Design Automation, Inc.
550 Kirkland Way, Suite 200
Kirkland, WA 98033

Phone:
(800) 470-2686
(425) 828-2122

111

112

Appendix B: Glossary

Access Type

A data type analogous to a pointer that provides a form of
data indirection. An access value is returned by an allocator.

Actual Parameter

An object or literal being passed as an argument to a subpro-
gram, or being used as a higher-level port or generic in a compo-
nent instantiation.

Aggregate

A form of expression that denotes the value of a composite type
(such as an array or record). An aggregate value is specified by
listing the value of each element of the aggregate, using either
positional or named association.

113

Appendix B: Glossary

114

Allocator

An operation in VHDL that creates an anonymous variable
object. Allocators return access values that may be used to
access the variable object.

Architecture

A design unit that describes the actual function (operation) of
all or part of your design. An architecture must be associated
with (bound to) an entity. All VHDL design descriptions must
include at least one architecture.

Architecture Body

That portion of an architecture declaration existing between the
begin and end statements of the architecture.

Array

A collection of one or more elements of the same type. Array
data types are declared with an array range and an array
element type, and may have more than one dimension.

Attribute

A special identifier used to return or specify information about
a named entity. Predefined attributes are prefixed by the
character. Other, non-standard attributes may be defined for
specific VHDL design tools.

Base Type

The type on which a subtype is based. For example, an array
subtype may be defined with a constrained range, and be based
on another array type that is unconstrained.

Binding

The association of a specific component instance with a lower-
level entity and architecture. Binding may be specified using
configuration statements or specifications, or may be implied by
the default binding.

Block

A VHDL feature allowing partitioning of the design descrip-
tion within an architecture.

Compile

The process of analyzing VHDL source file statements to
create an intermediate form. In the PeakVHDL simulation
environments, the compilation process results in 32-bit Win-
dows object files that must be linked to create a simulation
executable.

Component

An entity that has been declared for use in a higher-level design
entity.

Component Declaration

A statement defining the interface (port list and optional
generic list) to an entity that is to be instantiated in the current
design entity.

Composite Type

A data type such as an array or record that includes more than
one constituent element.

115

Appendix B: Glossary

Concurrent

A characteristic of statements within the architecture body of a
design description. Concurrent statements have no order
dependency, and describe operations that are inherently
parallel.

Configuration Statement

An optional design unit that specifies how a project is to be
assembled prior to simulation. Configurations are somewhat
akin to a parts list for your design and specify such things as
the binding of entities to architectures, the mapping of compo-
nents and ports to their lower-level equivalents, etc.

Constant

An declared object that has a constant value, and cannot be
changed. Constants are used to give symbolic names to literal
values, and may be declared globally (within packages) or
locally.

Constraint

A finite range of possible values for a type or subtype.

Declared Entity

An object, type, subprogram or other element of the design that
has been declared and given an identifying name. Declared
entities have scoping, meaning that they are not visible out-
side the scope in which they were declared.

116

Declaration

A statement entered in a declarative region of the design
description (such as in a package, or prior to the begin state-
ment of an entity, architecture, block, process or subprogram) that
creates a declared entity.

Delta Cycle

A simulation cycle in which all non-postponed processes and
other concurrent statements are repetitively executed and signal
assignments are schedule until no more events are pending. A
complete delta cycle occurs in zero simulated time (the start
and end time of the delta cycle are the same).

Descending Range

A range that is specified with the downto keyword.

Design Entity

The combination of an entity and its corresponding architec-
ture. The minimum VHDL design description includes at least
one design entity.

Design Unit

A separately compilable section of VHDL source code. The
five types of design units are entities, architectures, packages,
package bodies and configurations. Each design unit must have a
uniqgue name within the project.

117

Appendix B: Glossary

118

Driver

The combination of a given signal and its current and pro-
jected future values. When two or more drivers exist for a
given signal (such as when multiple values are specified for
the signal at the same point in time), a resolution function is
required.

Element

One entry in a composite type, such as an array. A one-dimen-
sional array declared with the array bounds 0 to 7, for ex-
ample, would have eight elements.

Entity

A design unit that describes the interface (inputs and outputs)
of all or part of your design. All VHDL design descriptions
must have at least one entity declaration.

Enumeration Literal

A symbolic representation of an enumerated type value. Enu-
meration literals may take the form of either identifiers or
characters.

Enumerated Type

A symbolic data type that is declared with an enumerated
type name, and one or more enumeration values (enumeration
literals).

Event

A change in the value of a signal at a given point in simulated
time. Events are scheduled (rather than immediate), and
always occur at the beginning of the next delta cycle. Events
can also be delayed through the use of the after keyword.

Exit Condition

A expression combined an exit statement that specifies a
condition under which a loop should be terminated.

Expression

A syntactically-correct sequence of operators, keywords and
literals that defines some computed value.

Field Name

An identifier that provides access to one element of a record
data type.

File Type

A data type that represents an arbitrary-length sequence of
values of a given type. The most typical application of a file
type is to represent a disk file, such as might be read or written
during simulation.

For Loop

A loop construct in which the iteration scheme is a for state-
ment. The for statement specifies a precise, finite range of the
loop, and creates an index variable for the loop.

119

Appendix B: Glossary

Formal Parameter

An identifier used within a subprogram declaration or other
context in which actual parameters, ports or generics are to be
later substituted.

Function

A subprogram that has a parameter list and returns a single
value. Function parameters must be of mode in.

Generic

A parameter passed to an entity, component or block that de-
scribes additional, instance-specific information about that
entity, component or block.

Global Declaration

A declaration that is visible to multiple design entities, as in the
case of a declaration made within a package.

Hierarchy

The structure of a design description, expressed in terms of a
tree of related components. Most simulated designs include at
least two levels of hierarchy: the test bench and the lower-level
design description.

Identifier

A sequence of characters that uniquely identify a named entity
in a design description.

120

Index

A scalar value that specifies a precise element, or range of
elements, within an array.

Infinite Loop

A loop that has no iteration scheme. Infinite loops should
include one or more exit conditions to avoid endless repeti-
tions and possibly stuck simulations.

Iteration Scheme

The starting and exit conditions for a loop. The iteration
scheme is expressed using a for or while statement in a loop.
A loop with no iteration scheme is an infinite loop.

Library

A storage facility allowing one or more VHDL source files
(and their corresponding design units) to be placed in a com-
mon location. Libraries are referenced in a VHDL source file
through the use of the library statement.

Literal

A specific value that can be applied to an object of a some type.
Literals fall into five general catagories: bit strings, enumera-
tion literals, numeric literals, strings, or the special literal null.

Loop

A sequential state providing the ability to repeat one or more
statements. A loop may be finite (as in the case of a for loop)
or infinite, depending on the nature of its iteration scheme.

121

Appendix B: Glossary

122

Mode

The direction of data (either in, out, inout or buffer) of a
subprogram parameter or entity port.

Named Association

A method of explicitly associating actual parameters and other
designators with formal designators, as in a subprogram refer-
ence or component instantiation.

Named Entity

A item that has been declared and given a unique name
(within the current scope). Examples of named entities include
such things as signals and variables, entities, architectures and
blocks, component instances, processes, loop labels, etc.

Object

A named entity that can be assigned (or initialized with) a
value and that has a specific type. Objects include signals,
constants, variables and files.

Parameter

An object or literal passed into a subprogram via that
subprogram’s parameter list.

Physical Type

A data type used to represent measurements. A physical type
value is specified with an integer literal followed by a unit
that has been defined for the type. One example of a standard
physical type is the type time, which has the units fs, ps, ns,
us, ms, sec, min, and hr.

Port

A interface element of an entity or component. A port must be
specified with a name, data type and mode.

Positional Association

A method of specifying the mapping of actual and formal
parameters (or actual and formal ports) by position in a list.

Procedure

A subprogram that has a parameter list and does not return a
value. Procedure parameters have modes indicating their
direction (e.g. in, out, inout, buffer).

Process

A collection of sequential statements that are executed when-
ever there is an event on any signal appearing in the process
sensitivity list or, in the case in which there is no sensitivity list,
whenever an event occurs (or simulation time is reached) that
satifies the condition of a wait statement within the process.
Signals assigned within a process are not updated until the
current delta cycle is complete.

Range

A subset of the possible values of a scaler type. Ranges may be
used, for example, to specify a type or subtype declaration, or to
specify the range of a loop.

Record

A data type that includes more than one element of differing
types. Record elements are identified by field names.

123

Appendix B: Glossary

124

Resolution Function

A special function, associated with a type declaration, that
describes the resulting value when two or more different
values are driven onto a signal of that data type.

Scalar

A data type that has a distinct order to its values, allowing two
objects or literals of that type to be compared using relational
operators. Scalar types include integers, enumerated types,
floating point types, and physical types.

Sequential

A characteristic of statements within processes and subprograms.
Sequential statements are executed in sequence, and therefore
have order dependency. Sequential statements may be used to
describe sequential logic (logic that implies memory ele-
ments), or may be used to describe combinational (non-
sequential) logic.

Signal

An storage object that maintains a history of events. Signals are
created as the result of signal declarations or port declarations.

Signal Declaration

A statement that introduces (creates) a new signal. Signals are
declared with a name and a data type. Signals may be declared
globally (in a package) or locally (such as in the declarative
region of an entity, architecture, or block). Assignments to sig-
nals are scheduled, meaning that do not have new values
assigned to them until the current delta cycle has completed.

Slice

A one-dimensional, contiguous array created as a result of
constraining a larger one-dimensional array.

Source File

A file containing VHDL statements describing all or part of
your design.

String

A string data type is an array of characters. String data types
may be constrained (fixed length) or unconstrained. A string
literal is a sequence of characters enclosed by two quotation
marks (*).

Subprogram

A function or procedure. Subprograms may be declared globally
(in a package) or locally (such as in the declarative region of
an entity, architecture, block, process or subprogram).

Test Bench

One or more VHDL source files describing the sequence of
tests to be run on your design. Test benches are normally the
top-level of a design being simulated.

Transaction

A scheduled (current or future) event for a given signal. A
transaction consists of a value and a time at which that value
is to be driven onto the signal.

125

Appendix B: Glossary

126

Time Unit

A symbolic unit of time used during simulation. Time units
are defined as part of the VHDL specification, and include
values such as ns (hanoseconds), ms (milliseconds), etc.

Type

A declared name and a corresponding set of declared values
representing the possible values of the type. Types fall into the
following general catagories: scalar types, composite types, file
types, and access types.

Type Conversion

An operation that results in the conversion of one data type to
another. Type conversions may be implicit, explicit, or make
use of type conversion functions.

Type Declaration

A declaration statement that creates a new data type. A type
declaration must include a type name and a description of the
entire set of possible values for that type.

Variable

A storage facility used in processes and subprograms to repre-
sent local data. Variables must be declared with a name and
type. Variables are persistent with processes (meaning they
retain their values in subsequent executions of the process),
but are non-persistent in subprograms.

Waveform

A series of transactions defining the behavior of a signal (in
terms of future events) over time.

Appendix C: Examples Gallery

The examples in this section are intended to help you get
started with VHDL. Each example demonstrates one or more
important features of the language, and demonstrates com-
monly used coding styles for synthesizable circuits and test
benches.

These examples, and more, can be found in the \EXAMPLES
subdirectory of your PeakVHDL installation. You are encour-
aged to copy these examples and modify them for your own
use.

127

Appendix C: Examples Gallery

Using Type Conversion Functions

128

This example, an 8-bit counter, demonstrates one possible
approach to type conversion. Type conversions are often
required in VHDL due to the languages strict type checking
features. In this example, a type conversion is required to
convert the array data types used in the design’s interface to
integer data types used internally for arithmetic operations.
For demonstration purposes, we are using a custom type
conversion function that is defined in the design description.
In most cases, you will want to use a standard type conversion
function from the IEEE library, or use a type conversion
function provided by your synthesis vendor.

Note: Another option when numeric values are required is to make use of
the IEEE 1076.3 numeric_std package. This package is provided in the
library IEEE supplied with the Peak\VHDL simulator. See example NU-
MERIC for more details about 1076.3 and the numeric_std package.

Design Description
library ieee;
use ieee.std_logic_1164.all;
package conversions is
function to_unsigned (a: std_ulogic_vector) return integer;
function to_vector (size: integer; num: integer) return std_ulogic_vector;

end conversions;

package body conversions is

-- Convert a std_ulogic_vector to an unsigned integer
function to_unsigned (a: std_ulogic_vector) return integer is

alias av: std_ulogic_vector (1 to a'length) is a;

variable ret,d: integer;
begin

d:==1;

ret :=0;

for iin a'length downto 1 loop

if (av(i) ='1") then

Using Type Conversion Functions

ret :=ret + d;
end if ;
d:=d*2;

end loop ;
return ret;
end to_unsigned;

-- Convert an integer to a std_ulogic_vector

function to_vector (size: integer; num: integer) return std_ulogic_vector

variable ret: std_ulogic_vector (1 to size);
variable a: integer;
begin
a:=num;
for iin size downto 1 loop
if ((a mod 2) = 1) then
ret(i) :='1";
else
ret(i) :='0";
end if ;
a:=al?2;
end loop ;
return ret;
end to_vector;

end conversions;

-- COUNT16: 4-bit counter.
Library ieee;

Use ieee.std_logic_1164.all;
use work.conversions.all;

Entity COUNT16 Is
Port (Clk,Rst,Load: in std_ulogic;
Data: in std_ulogic_vector(3 downto 0);
Count: out std_ulogic_vector(3 downto 0)
)
End COUNT16;

Architecture COUNT16_A of COUNT16 Is
Begin

129

Appendix C: Examples Gallery

130

process (Rst,CIk)

-- Note the use of a variable to localize the feedback

-- behavior of the counter registers. This is good general
-- design practice in VHDL, as it helps to cut down on

-- unwanted side-effects. In this example, the use of

-- a variable of type integer also localizes the use of

-- a numeric data type to within the process itself. This

-- makes it easier to modify the design as necessary when
-- using different type conversion routines.

variable Q: integer range 0 to 15;
begin

if Rst ='1"then -- Asynchronous reset
Q:=0;
elsif rising_edge(CIk) then
if Load ='1' then
Q :=to_unsigned(Data); -- Convert vector to integer
elsif Q =15 then

Q:=0;
else
Q=Q+1;
end if ;
end if ;
Count <=to_vector(4,Q); -- Convert integer to vector

-- for use outside the process.

end process ;

End COUNT16_A;

Test Bench

library ieee;
Use ieee.std_logic_1164.all;

Entity T_COUNT16 Is
End T_COUNT16;

use work.countl6;

Using Type Conversion Functions

Architecture stimulus of T_COUNT16 Is
Component COUNT16
Port (Clk,Rst,Load: in std_ulogic;
Data: in std_ulogic_vector(3 downto 0);
Count: out std_ulogic_vector(3 downto 0)
);
End Component ;
Signal CIk,Rst,Load: std_ulogic; -- Top level signals
Signal Data: std_ulogic_vector(3 downto 0);
Signal Count: std_ulogic_vector(3 downto 0);
Signal Clock_cycle: natural := 0;

Begin
DUT: COUNT16 Port Map (Clk,Rst,Load,Data,Count);

-- The first process sets up a 20Mhz background clock
CLOCK: process
begin
Clock_cycle <= Clock_cycle + 1;
Clk <=1}
wait for 25 ns;
Clk <=0}
wait for 25 ns;
end process ;

-- This process applies stimulus to reset and load the counter...

Stimulusl: Process

Begin
Rst<="1"
wait for 40 ns;
Rst <="0"
Load <="1";
Data <= "0100"; -- Load 0100 into the counter
wait for 50 ns;
Load <="'0";
wait for 500 ns;
Load <="1";
Data <= "0000"; -- Load 0000 into the counter
wait for 50 ns;
Load <="'0";
wait for 11000 ns;
walit ;

End Process ;
End stimulus;

131

Appendix C: Examples Gallery

Using Components

132

This example is a structural description of a T flip-flop
counter. The example demonstrates the use of component port
maps and default interfaces.

Design Description

-- TCOUNT.VHD
library ieee;
use ieee.std_logic_1164.all;

entity andgate is
port (A,B,C,D: in std_ulogic :='1";
Y: out std_ulogic);
end andgate;

architecture gate of andgate is
begin

Y <=Aand Band C and D;
end gate;

use ieee.std_logic_1164.all;
entity tff is
port (Rst,CIk, T: in std_ulogic;
Q: out std_ulogic);
end tff;

architecture behavior of tff is
begin
process (Rst,Clk)
variable Qtmp: std_ulogic;
begin
if (Rst="1") then
Qtmp :="'0"
elsif rising_edge(CIk) then
if T="1"then
Qtmp := not Qtmp;
end if ;
end if ;
Q <= Qtmp;

Using Components

end process ;
end behavior;

use ieee.std_logic_1164.all;
entity TCOUNT is
port (Rst: in std_ulogic;
Clk: in std_ulogic;
Count: out std_ulogic_vector(4 downto 0)
)
end TCOUNT;

architecture STRUCTURE of TCOUNT is
component tff
port (Rst,CIK, T: in std_ulogic;
Q: out std_ulogic);
end component ;
component andgate
port (A,B,C,D: in std_ulogic :='1";
Y: out std_ulogic);
end component ;
constant VCC: std_ulogic :='1";
signal T,Q: std_ulogic_vector(4 downto 0);
begin

T(0) <= VCC;

TO: tff port map (Rst=>Rst, Clk=>CIk, T=>T(0), Q=>Q(0));

T(1) <= Q(0);

T1: tff port map (Rst=>Rst, Clk=>CIk, T=>T(1), Q=>Q(1));

Al: andgate port map (A=>Q(0), B=>Q(1), Y=>T(2));

T2: tff port map (Rst=>Rst, Clk=>CIk, T=>T(2), Q=>Q(2));

A2: andgate port map (A=>Q(0), B=>Q(1), C=>Q(2), Y=>T(3));

T3: tff port map (Rst=>Rst, Clk=>CIk, T=>T(3), Q=>Q(3));

A3: andgate port map (A=>Q(0), B=>Q(1), C=>Q(2), D=>Q(3), Y=>T(4));
T4: tff port map (Rst=>Rst, Clk=>CIk, T=>T(4), Q=>Q(4));

Count <= Q;

end STRUCTURE;

Test Bench

-- Auto-generated test bench for TCOUNT

library ieee;

133

Appendix C: Examples Gallery

134

use ieee.std_logic_1164.all;
use std.textio.all;
use work. TCOUNT;

entity TESTBNCH is
end TESTBNCH;

architecture stimulus of TESTBNCH is
component TCOUNT
port (
Rst: in std_ulogic;
Clk: in std_ulogic;
Count: out std_ulogic_vector(4 downto 0)
)
end component ;
constant PERIOD: time := 100 ns;
-- Top level signals go here...
signal Rst: std_ulogic;
signal CIk: std_ulogic;
signal Count: std_ulogic_vector(4 downto 0);
signal done: boolean := false;

for DUT: TCOUNT use entity work. TCOUNT(STRUCTURE);

begin
DUT: TCOUNT port map (
Rst => Rst,
Clk => CIk,
Count => Count

);

CLOCKZ1.: process
variable clktmp: std_ulogic :='0";
begin
wait for PERIOD/2;
clktmp := not clktmp;
Clk <= clktmp; -- Attach your clock here
if done = true then
wait ;
end if ;
end process ;

STIMULUSZ1: process
begin

Rst<="1"

Using Components

wait for PERIOD;

Rst <="0";

wait for PERIOD * 36;
done <= true;

wait ;

end process ;

end stimulus;

135

Appendix C: Examples Gallery

Using Generate Statements

136

This example demonstrates the use of generate statements.
The parity generation circuit is built from a chain of exclusive-
OR gates, which have been defined separately.

Design Description

-- Parity generator.
library ieee;
use ieee.std_logic_1164.all;

entity parity10 is
port (D: in std_ulogic_vector(0 to 9);
ODD: out std_ulogic);
constant WIDTH: integer := 10;
end parity10;

library gates;
use gates.xor2;

architecture structure of parity10 is
component xor2
port (A,B: in std_ulogic;
Y: out std_ulogic);
end component ;

signal p: std_ulogic_vector(0 to WIDTH - 2);
for G: xor2 use entity gates.xor2(xor_a);
begin
-- The outermost generate loop is a for-generate
-- that repeats once for each of the XOR gates required
-- for the circuit...

G: for |in 0to (WIDTH - 2) generate

-- This generate statement creates the first XOR gate
-- in the series...

GO: if | = 0 generate

Using Generate Statements

X0: xor2 port map (A => D(0), B => D(1), Y => p(0));
end generate GO;

-- This generate statement creates the middle XOR gates
-- in the series...

G1l:if I >0and | < (WIDTH - 2) generate
X0: xor2 port map (A => p(i-1), B => D(i+1), Y => p(i));
end generate G1,;

-- This generate statement creates the last XOR gate
-- in the series...

G2:if | = (WIDTH - 2) generate
X0: xor2 port map (A => p(i-1), B => D(i+1), Y => ODD);
end generate G2;

end generate G;

end structure;

Test Bench

library ieee;
use ieee.std_logic_1164.all;

entity testbnch is
end testbnch;

use work.parity10;

architecture behavior of testbnch is
component parityl0
port (D: in std_ulogic_vector(0 to 9);
ODD: out std_ulogic);
end component ;
sighal D: std_ulogic_vector(0 to 9);
signal ODD: std_ulogic;

begin

DUT: parity10 port map (D,0ODD);

137

Appendix C: Examples Gallery

process
begin
D <="0000000001";
wait for 50 ns;
D <="1000000001";
wait for 50 ns;
D <="0100100001";
wait for 50 ns;
D <="0000000011";
wait for 50 ns;
D <="0100000000";
wait for 50 ns;
D <="1010100010";
wait for 50 ns;
D <="1111111101";
wait for 50 ns;
D <="0111000001";
wait for 50 ns;
D <="1000000000";
wait for 50 ns;
end process ;
end behavior ;

138

Using Generate Statements

Understanding Sequential Sighal Assignments

This CRC generator implements the CRC-CCITT standard for
serial data transmission. The VHDL description for the CRC
generator is based in an ABEL design appearing in "Digital
Design Using ABEL" by David Pellerin and Michael Holley
(Prentice Hall, 1994).

This design description demonstrates the important distinc-
tion between signals and variables in VHDL. Note that the
chain of registers and XOR operations has been written using
signals within a process. It would be possible to describe the
same circuit using variables, but great care would have to be
taken to ensure that the desired circuit is produced. This is
because variable assignments are immediate: writing variable
assignments such as

X(0) :=Din xor X(15);

X(1) :=X(0);
X(2) = X(1);
X(3) :=X(2);
X(4) :=X@);

would not result in a single XOR function and a simple chain
of registers. Instead, the expression 'Din xor X(15)" would be
assumed as the input to all registers, rather than just X(0).

Design Description

-- 8-bit Serial CRC Generator.

library ieee;
use ieee.std_logic_1164.all;

entity crc8s is
port (Clk,Set, Din: in std_ulogic;
CRC_Sum: out std_ulogic_vector(15 downto 0));
end crc8s;

139

Appendix C: Examples Gallery

architecture behavior of crc8s is
signal X: std_ulogic_vector(15 downto 0);

begin
process (Clk,Set)
begin
if Set="1"then

X <= (others =>'1");
elsif rising_edge(CIk) then
X(0) <= Din xor X(15);
X(1) <=X(0);
X(2) <= X(1);
X(3) <= X(2);
X(4) <= X@3);
X(5) <= X(4) xor Din xor X(15);
X(6) <= X(5);
X(7) <= X(6);
X(8) <= X(7);
X(9) <= X(8);
X(10) <= X(9);
X(11) <= X(10);
X(12) <= X(11) xor Din xor X(15);
X(13) <= X(12);
X(14) <= X(13);
X(15) <= X(14);
end if ;

end process ;

CRC_Sum <= X;
end behavior;
Test Bench

This test bench applies a sequence of values to the CRC gen-
erator, and demonstrates the use of record data types.

-- Test bench for CRC generator

library ieee;
use ieee.std_logic_1164.all;

use work.crc8s; -- Get the design out of library 'work’

140

Understanding Sequential Signal Assignments

entity testcrc is
end testcrc;

architecture stimulus of testcrc is
component crc8s
port (Clk,Set,Din: in std_ulogic;
CRC_Sum: out std_ulogic_vector(15 downto 0));
end component ;

signal CE: std_ulogic;

signal CIk,Set: std_ulogic;

signal Din: std_ulogic;

sighal CRC_Sum: std_ulogic_vector(15 downto 0);
signal vector_cnt: integer := 1;

signal error_flag: std_ulogic :="'0";

type test_record is record

CE :std_ulogic; -- Clock enable

Set :std_ulogic;

Din : std_ulogic;

CRC_Sum : std_ulogic_vector (15 downto 0);
end record ;

type test_array is array(positive range <>) of test_record,;
sighal svector: test_record;

constant test_vectors : test_array := (
-- CE, Set, Din, CRC_Sum

(0%, '1,'0", " "), -- Reset
G — ", - H'
R R ——— ",

R —— ",

R | —— ",

R R ——— ",

R —— ",

R | —— ",

('1','0, '0', "0010100000111100"), -- 0x283C
G — ", e’
R R —— ",

R R —— ",

R —— ",

R | —— ",

R S — ",

R —— ",

141

Appendix C: Examples Gallery

);

begin

('1','0Y,'1', "1010010101101001"), -- 0OXA569

(1,'0,'0," ", -
(1,0,1,"),

(1,0,1,"),

(1,0,0,"),

(1,0,1,"),

(1,0,1,"),

(1,'0,'0," ,

(1','0",'0", "0010000101100101"), -- 0Ox2165
G0 [R —— ", -

G T R — "),

(1,0,1,"),

(1,0,0,"),

(1,0,1,"),

(1,0,1,"),

(G T [— "),

(1','0,'0, "1111110001101001"), -- OXFC69
(G o [", -0’

G T R — "),

G T R — "),

(G T [— "),

(1,0,1,"),

(1,0,1,"),

(1,0,1,"),

('1','0, 1", "1101101011011010") -- OXDADA

-- instantiate the component
DUT: crc8s port map (Clk,Set,Din,CRC_Sum);

-- provide Stimulus and check the result

testrun: process
variable vector : test_record;
begin
for index in test_vectors'range loop

142

vector_cnt <= index;
vector := test_vectors(index);
svector <= vector; -- so we can see it in simulation

-- Apply the input stimulus...
CE <= vector.CE;

Understanding Sequential Signal Assignments

Set <= vector.Set;
Din <= vector.Din;

-- Clock (low-high-low) with a 100 ns cycle...

Clk <="0";

wait for 25 ns;

if CE ='1"then

Clk <="1";

end if ;

wait for 50 ns;

Clk <="'0";

wait for 25 ns;

-- Check the results...
if (vector.CRC_Sum /= "----mmnmmmmmemv "
and CRC_Sum /= vector.CRC_Sum) then
error_flag <="1";
assert false
report "Output did not match!"
severity WARNING;
else
error_flag <="'0";
end if ;
end loop ;
walit ;
end process ;

end stimulus;

143

Appendix C: Examples Gallery

Describing A State Machine

This example demonstrates how to write a synthesizable state
machine description using processes and enumerated types.

The circuit, a video frame grabber controller, was first de-
scribed in Practical Design Using Programmable Logic by David
Pellerin and Michael Holley (Prentice Hall, 1990). A slightly
modified form of the circuit also appears in the ATMEL
Configurable Logic Design and Application Book, 1993-1994
edition.

The circuit described is a simple freeze-frame unit that 'grabs’
and holds a single frame of NTSC color video image. This
design description includes the frame detection and capture
logic. The complete circuit requires an 8-bit D-A/A-D con-
verter and a 256K X 8 static RAM.

Design Description

-- A Video Frame Grabber.

Library ieee;
Use ieee.std_logic_1164.all;

Entity CONTROL Is
Port (Reset: in std_ulogic;
Clk: in std_ulogic;
Mode: in std_ulogic;
Data: in std_ulogic_vector(7 downto 0);
TestLoad: in std_ulogic;
Addr: out integer range 0 to 253243;
RAMWE: out std_ulogic;
RAMOE: out std_ulogic;
ADOE: out std_ulogic);
End CONTROL,;

Architecture CONTROL_A of CONTROL Is
constant FRAMESIZE: integer := 253243;

144

Describing A State Machine

constant TESTADDR: integer := 253000;

signal ENDFR: std_ulogic;
signal INCAD: std_ulogic;
signal VS: std_ulogic;
sighal Sync: integer range 0 to 127;
type states is (StateLive,StateWait,StateSample,StateDisplay);
signal current_state, next_state: states;
Begin

-- Address counter. This counter increments until we reach the end of
-- the frame (address 253243), or until the input INCAD goes low.

ADDRCTR: process (CIk)
variable cnt: integer range 0 to FRAMESIZE;
begin
if rising_edge(CIk) then
if TestLoad ='1' then
cnt := TESTADDR;

ENDFR <="'0"
else
if INCAD ="'0" or cnt = FRAMESIZE then
cnt:=0;
else
cnt:=cnt+1;
end if ;
if cnt = FRAMESIZE then
ENDFR <="1"
else
ENDFR <="'0"
end if;
end if ;
end if;
Addr <= cnt;

end process ;

-- Vertical sync detector. Here we look for 128 bits of zero, which
-- indicates the vertical sync blanking interval.

SYNCCTR: process (Reset,CIk)

begin
if Reset ='1' then
Sync <= 0;

elsif rising_edge(CIk) then
if Data /="00000000" or Sync = 127 then
Sync <= 0;

145

Appendix C: Examples Gallery

146

else
Sync <= Sync + 1;
end if ;
end if ;
end process ;

VS <="1"when Sync =127 else 0
-- State register process:

STREG: process (Reset,CIk)
begin
if Reset ='1' then
current_state <= StateLive;
elsif rising_edge(CIk) then
current_state <= next_state;
end if;
end process ;

-- State transitions:

STTRANS: process (current_state,Mode,VS,ENDFR)

begin
case current_state is

when StateLive => -- Display live video on the output

RAMWE <='1%;
RAMOE <="'1%
ADOE <='0";
INCAD <=0
if Mode ="1' then
next_state <= StateWait;
end if ;
when StateWait => -- Wait for vertical sync
RAMWE <='1";
RAMOE <="'1%
ADOE <='0";
INCAD <=0
if VS ="1"then
next_state <= StateSample;
end if ;

when StateSample => -- Sample one frame of video

RAMWE <="'0";
RAMOE <="1"
ADOE <='0";
INCAD <="1";

if ENDFR ="1"' then

Describing A State Machine

next_state <= StateDisplay;
end if ;
when StateDisplay => -- Display the stored frame
RAMWE <="1";
RAMOE <="'0";
ADOE <="1";
INCAD <="'1"
if Mode ="'1' then
next_state <= StateLive;
end if ;
end case ;
end process ;

End CONTROL_A;

Test Bench

The following test bench uses loops to simplify the description
of a long test sequence.

library ieee;
Use ieee.std_logic_1164.all;
Use std.textio.all;

library work;
use work.control;

Entity T_CONTROL Is
End T_CONTROL;

Architecture stimulus of T_CONTROL Is
Component CONTROL
Port (Reset: in std_ulogic;
Clk: in std_ulogic;
Mode: in std_ulogic;
Data: in std_ulogic_vector(7 downto 0);
TestLoad: in std_ulogic;
Addr: out integer range 0 to 253243;
RAMWE: out std_ulogic;
RAMOE: out std_ulogic;
ADOE: out std_ulogic);
End Component ;
Constant PERIOD: time := 100 ns;

147

Appendix C: Examples Gallery

-- Top level signals go here...

Signal Reset: std_ulogic;

Signal CIk: std_ulogic;

Signal Mode: std_ulogic;

Signal Data: std_ulogic_vector(7 downto 0);
Signal TestLoad: std_ulogic;

Signal Addr: integer range 0 to 253243;
Signal RAMWE: std_ulogic;

Signal RAMOE: std_ulogic;

Signal ADOE: std_ulogic;

Signal done: boolean := false;

Begin

DUT: CONTROL Port Map (
Reset => Reset,
Clk => CIk,
Mode => Mode,
Data => Data,
TestLoad => TestLoad,
Addr => Addr,
RAMWE => RAMWE,
RAMOE => RAMOE,
ADOE => ADOE

);

Clockl: process
variable clktmp: std_ulogic :='0";
begin
wait for PERIOD/2;
clktmp := not clktmp;
Clk <= clktmp; -- Attach your clock here
if done = true then
walit ;
end if ;
end process ;

Stimulusl: Process
Begin
-- Sequential stimulus goes here...
Reset <="1";
Mode <="'0";
Data <= "00000000";
TestLoad <="'0";
wait for PERIOD;
Reset <='0";
wait for PERIOD;

148

Describing A State Machine

Data <= "00000001";
wait for PERIOD;
Mode <="1";

-- Check to make sure we detect the vertical sync...
Data <= "00000000";
for iin Oto 127 loop
wait for PERIOD;
end loop ;

-- Now sample data to make sure the frame counter works...
Data <="01010101";
for iin 0to 100000 loop
wait for PERIOD;
end loop ;

-- Load in the test value to check the end of frame detection...
TestLoad <="'1";
wait for PERIOD;
TestLoad <="'0";
for iin 0 to 300 loop
wait for PERIOD;
end loop ;
done <= true;

End Process ;

End stimulus;

149

Appendix C: Examples Gallery

Reading And Writing From Files

150

More complex test benches often make use of VHDL's file read
and write capabilities. These features make it easy to create
test benches that operate on data stored in files, such as test
vectors. The following example demonstrates how you can
use the text 1/0 features of VHDL to read test data from an
ASCII file.

Consider a Fibonacci sequence generator. A Fibonnaci se-
guence is a series of numbers, beginning with 1, 1, 2, 3, 5..., in
which every number in the sequence is the sum of the previ-
ous two numbers. To construct a circuit that generates an n-bit
Fibonacci sequence, two n-bit registers — A and B — are
required to store the last two values of the sequence and add
them to produce the next value.

To initialize the circuit, the A and B registers must be loaded
with values of 0 and 1 respectively. Subsequent cycles of the
circuit must move the calculated next value into the B register
while moving the value stored in the B register to the A
register. In this implementation, the A and B registers form a
2-deep first-in first-out (FIFO) stack.

The VHDL source file shown below describes this Fibonnaci
sequence generator.

Design Description

-- Fibonacci sequence generator.
-- Copyright 1996, Accolade Design Automation, Inc.

library ieee;
use ieee.std_logic_1164.all;

entity fibis
port (Clk,Clr: in std_ulogic;
Load: in std_ulogic;
Data_in: in std_ulogic_vector(15 downto 0);

Reading And Writing From Files

S: out std_ulogic_vector(15 downto 0));
end fib;

architecture behavior of fib is
signal Restart,Cout: std_ulogic;
signal Stmp: std_ulogic_vector(15 downto 0);
signal A, B, C: std_ulogic_vector(15 downto 0);
signal Zero: std_ulogic;
signal Carryln, CarryOut: std_ulogic_vector(15 downto 0);

begin
P1: process (CIk)
begin
if rising_edge(CIk) then
Restart <= Cout;
end if;
end process ;

Stmp <= A xor B xor Carryln;
Zero <='1’when Stmp = “0000000000000000" else ‘0’;

Carryln <= C(15 downto 1) & ‘0’;

CarryOut <= (B and A) or ((B or A) and Carryln);
C(15 downto 1) <= CarryOut(14 downto O0);
Cout <= CarryOut(15);

P2: process (CIk,Clr,Restart)
begin
if Clr =1’ or Restart = ‘1’ then
A <= “0000000000000000";
B <= “0000000000000000";
elsif rising_edge(CIk) then
if Load = ‘1’ then
A <= Data_in;
elsif Zero ='1' then
A <= “0000000000000001";
else
A<=B;
end if;
B <= Stmp;
end if;
end process ;

S <= Stmp;

end behavior;

151

Appendix C: Examples Gallery

Test Bench

The following test bench reads lines from an ASCII file and
applies the data contained in each line as a test vector to
stimulate and test the Fibonacci circuit.

-- Test bench for Fibonacci sequence generator.

library ieee;

use ieee.std_logic_1164.all;

use std.textio.all; -- Use the text I/O features of the standard library
use work.fib; -- Get the design out of library ‘work’

entity testfib is -- Entity; once again we have no ports

end testfib;

architecture stimulus of testfib is
component fib -- Create one instance of the fib design unit
port (Clk,Clr: in std_ulogic;
Load: in std_ulogic;
Data_in: in std_ulogic_vector(15 downto 0);
S: out std_ulogic_vector(15 downto 0));
end component;

-- The following conversion functions are used to process the test data
-- and convert from string data to array data...
function str2vec(str: string) return std_ulogic_vector is
variable vtmp: std_ulogic_vector(str'range);
begin
for iin str'range loop
if (str(i) ='1") then

vtmp(i) == ‘1’;
elsif (str(i) = ‘0’) then
vtmp(i) :=0’;
else
vtmp(i) := ‘X’;
end if;
end loop;
return vtmp;

end;

152

Reading And Writing From Files

function vec2str(vec: std_ulogic_vector) return string is
variable stmp: string(vec’left+1 downto 1);
begin
for iin vec'reverse_range loop
if (vec(i) =‘1") then

stmp(i+1) :=‘1";
elsif (vec(i) =‘0’) then
stmp(i+1) := ‘0’;
else
stmp(i+1) :=‘X’;
end if;
end loop;
return stmp;
end;
signal CIk,Clr: std_ulogic; -- Declare local signals

signal Load: std_ulogic;

signal Data_in: std_ulogic_vector(15 downto 0);
signal S: std_ulogic_vector(15 downto 0);
signal done: std_ulogic :=‘0’;

constant PERIOD: time := 50 ns;

for DUT: fib use entity work.fib(behavior); -- Configuration
-- specification
begin
DUT: fib port map (Clk=>ClIk,Clr=>Clr,Load=>Load, -- Creates one
Data_in=>Data_in,S=>S); -- instance

Clock: process
variable c: std_ulogic :=‘0’; -- Background clock process
begin
while (done ='0’) loop -- The done flag indicates that we
wait for PERIOD/2; -- are finished and can stop the clock.
c:=not c;
Clk <=c;
end loop ;
end process ;

read_input: process
file vector_file: text is in “testfib.vec”; -- File declaration

variable stimulus_in: std_ulogic_vector(33 downto 0); -- Temporary

153

Appendix C: Examples Gallery

154

variable S_expected: std_ulogic_vector(15 downto 0);

-- storage
-- for inputs

-- Temporary
-- storage

-- for

-- outputs

variable str_stimulus_in: string(34 downto 1); -- Temporary storage
-- for big string

variable err_cnt: integer := 0; -- Keeps track of how many errors
variable file_line: line; -- Text line buffer; ‘line’ is a
-- standard type (textio library).

begin
wait until rising_edge(CIk); -- Synchronizes with first clock
while not endfile(vector_file) loop -- Loops through the lines in
-- the file
readline (vector_file file_line); -- Reads one complete line
-- into file_line
read (file_line,str_stimulus_in) ; -- Extracts the first field from
-- file_line
stimulus_in := str2vec(str_stimulus_in); -- Converts the input
-- string to a vector
wait for 1 ns; -- Delays for a nanosecond
Clr <= stimulus_in(33); -- Gets each input's
Load <= stimulus_in(32); -- value from the test
Data_in <= stimulus_in(31 downto 16); -- vector array and

-- assigns the values

S_expected := stimulus_in(15 downto 0);

wait until falling_edge(CIk); -- Waits until the clock goes
-- back to ‘0’ (midway through

-- the clock cycle)

if (S /= S_expected) then

Reading And Writing From Files

err_cnt:=err_cnt+1; -- Increments the error counter and
assert false -- reports an error if different

report “Vector failure!” & If &

“Expected S to be “ & vec2str(S_expected) & If &

“but its value was “ & vec2str(S) & If

severity note;

end if;
end loop ; -- Continues looping through the file
done <=‘1% -- Sets a flag when we are finished,; this
-- will stop the clock.
wait ; -- Suspends the simulation

end process ;

end stimulus;

155

156

Appendix D: SV/OLE Reference

This chapter describes the programming interface to the SV/
OLE server. The purpose of this chapter is to allow sophisti-
cated users direct access to, and control over, all aspects of the
SV/OLE simulation server.

This chapter assumes that you have a basic understanding of
OLE Automation in the Windows environment, and assumes
that you are familiar with Microsoft’s Visual Basic or Visual
C++ development systems. Before using this chapter, you
should study the sample Visual Basic application presented in
the previous chapter.

The example code in this chapter is written in Visual Basic
(version 4), and does not necessarily reflect the actual code
you will write when interfacing to SV/OLE. Specifically, the
examples shown include minimal (if any) error checking to
ensure that the OLE Automation calls have properly executed.
Errors can occur during these calls for various reasons, such as
a lack of memory or resources, or incorrect argument data.
Errors in the SVOLE server itself can also result in OLE Auto-
mation errors. Refer to your Visual Basic or Visual C++ docu-
mentation and the examples provided in the previous chapter
(and in the examples\svole directory), for information about
detecting and recovering from such errors.

157

Appendix D: SV/OLE Reference

SV/OLE Operation Overview

158

The SV/OLE server is an OLE-enabled Windows application
that is used to load and execute previously compiled and
linked VHDL design descriptions, called simulation executables.

When you install PeakVHDL, the SV/OLE server is registered
with Windows under the name Accolade.Sim.4.

Note: The version number appended to theend of the server name is updated
on a regular basis. To determine the most current server name, examine the
Windows Registry (using REGEDIT) and search for the Accolade.Sim
entry in the Classes section of the HKEY_LOCAL_MACHINE/Software
registry section .

In the following sections you will find detailed descriptions of
all of the methods and properties available from the default
dispatch of the SV/OLE server. Before using these methods and
properties, you must first create an instance of the SV/OLE
server.

To create an instance of the SV/OLE server, you will issue a
call to the OLE system to create the SV/OLE server object. In
Visual Basic, you would use the CreateObject() function as
follows:

dim SVOLE as object

Set SVOLE = CreateObject(“Accolade.Sim.4")

Note: It is important to check the status SVOLE at this point to ensure that
the OLE server object has been created. In Visual Basic, you must check the
Err flag to determine if the call to CreateObject() was successful.

The general sequence of operation for the Accolade.Sim.4 SV/
OLE server is:

1. Create the OLE server object using CreateObject (or other
documented method, depending on your software devel-
opment environment).

SV/OLE Operation Overview

2. Set the arguments of SV/OLE with the Args() method. The
Args() method accepts a simulation executable file name
as its argument and causes that simulation executable to
be loaded.

3. Set up atimer or other polling system to periodically check
the status of the running SV/OLE process using the
QueryStatus() and QueryPercentDone() methods.

4. Using that same timer, periodically collect transcript
messages and display them using GetTranscriptText().

5. Set up the simulation (possibly based on user-supplied
inputs) using GetVariables(), GetUserTypes(),
AddWatch(), DeleteWatch(), TimeStep(), etc.

6. Start the simulation running with Start().

7. While the simulation runs, periodically check the status of
SV/OLE with QueryStatus() and handle assertion and
Text 1/0 conditions as needed.

8. If necessary, halt a running simulation (typically when
requested by the user) using the Stop() method.

9. Check for simulation completion with the QueryStatus()
method.

10. Query the event database using GetEvents() to display or
process the simulation event data.

11. Remove the OLE server object from memory using the
Exit() method.

For specific examples of how to use these methods and prop-
erties, refer to the tutorial presented in the preceding chapter.

159

Appendix D: SV/OLE Reference

FUNCTION SVOLE.Args()

160

INTERFACE

FUNCTION Args(String) return Boolean

DESCRIPTION

Sets the arguments for SV/OLE. If the arguments are valid,
the simulation executable will be loaded and initialization will
be started before the Args() function returns. The SV/OLE
server will be in the RUNNING state (see QueryStatus) upon
return, indicating that the initialization phase has been
started. During initialization the initial value of every signal
driver is computed and each implicit and user defined process
is executed once, as per the standard. During this initializa-
tion procedure, any activity that might occur during the
simulation of the design could potentially occur, and your
interface must be prepared to handle this. These activities
include things like interactive input/output with the text 170
predefined files INPUT and OUTPUT, transcript messages,
etc. The end of the initialization phase is complete when
SVOLE enters the READY state (see QueryStatus).

INPUTS

The argument list. The argument list is a string in the follow-
ing format:

simfile [-g]

Valid arguments are:

simfile Specifies the name of the compiled and linked
simulation executable.

-g Insert source-level debugging informa-
tion

FUNCTION SVOLE.AtomToName()

OUTPUTS

True, if successful.

CONDITIONS

This method may only be called once, and must be the first
method called.

EXAMPLE

Set SVOLE = CreateObject(“Accolade.Sim.1")
argument$ = “myfile -g”

OLEStatus = SVOLE.Args(argument$)
OLEStatus = SVOLE.Start

FUNCTION SVOLE.AtomToName()

INTERFACE
FUNCTION AtomToName(Long) return String

DESCRIPTION

Variable and signal names are each given a unique integer to
represent them for more efficient internal communication and
in some of the more frequently used OLE methods. This
method converts a integer back into the signal/variable name
that it has been assigned to.

INPUTS

An integer that has been assigned to a signal or variable name.

OUTPUTS

The name which the given integer is assigned to.

161

Appendix D: SV/OLE Reference

CONDITIONS

None

EXAMPLE

Dim SigName as string
SigName$ = SVOLE.AtomToName(Atom)

FUNCTION SVOLE.CurrentBP()

162

INTERFACE

FUNCTION CurrentBP() return String

DESCRIPTION

Reports the VHDL source location of the next statement of
VHDL code that will be executed. If the simulation has
stopped at a user break point, then this is the same as the
location of the actual break point that was set. It is possible,
however, for the simulation to stop at a point other than the
specified break point. This is because additional executable
code is created by the PeakVVHDL compiler to support SV/
OLE, ane this code does not correspond to any actual VHDL
source code. In this case a negative value is returned for the
source line number. A negative value indicates that the simula-
tion is not stopped on a specific (viewable) source file line.
The client application may at this point choose to repeatedly
call the SingleStep() method until it reaches code that corre-
sponds to user written (viewable) VHDL code.

INPUTS

None

FUNCTION SVOLE.DeleteBP()

OUTPUTS

Returns the VHDL source location in the form “module-
name:line-number” as in “adder:32”, unless the next line of
code does not correspond to a user-written code. In the latter
case a negative value is returned.

CONDITIONS

A design must have been previously loaded with the Args()
method and the kernel must be in the READY state (see
QueryStatus).

EXAMPLE

Dim colon as integer

Dim ModuleName as string

Dim LineNumber as integer

BPString$ = SVOLE.CurrentBP

colon% = Instr(BPString$,”:")

ModuleName$ = Left$(BPString$, colon% - 1)
LineNumber% = Val(Mid$(BPString$, colon% + 1)

FUNCTION SVOLE.DeleteBP()

INTERFACE

FUNCTION DeleteBP(String) return Boolean

DESCRIPTION

Deletes a previously set break point.

INPUTS

A string specifying the location of the ACTUAL break point.
This should be the string returned by the SetBP() function,
when the break point was set.

163

Appendix D: SV/OLE Reference

OUTPUTS

True, if successful.

CONDITIONS

A design must have been previously loaded with the Args()
method and the kernel must be in the READY state (see
QueryStatus).

EXAMPLE

OLEStatus = SVOLE.DeleteBP(BPString$)

FUNCTION SVOLE.DeltaStep()

INTERFACE

FUNCTION DeltaStep() return Boolean

DESCRIPTION

Starts the simulation for one delta of simulation. This corre-
sponds to one simulation step, as defined by the VHDL stan-
dard.

INPUTS

None

OUTPUTS

True, if successful.

164

FUNCTION SVOLE.EXxit()

CONDITIONS

A design must have been previously loaded with the Args()
method and SV/OLE must be in the READY state (see
QueryStatus).

EXAMPLE

OLEStatus = SVOLE.DeltaStep

FUNCTION SVOLE.Exit()

INTERFACE

FUNCTION Exit() return Boolean

DESCRIPTION

Terminates the OLE server.

INPUTS

None

OUTPUTS

True, if successful.

CONDITIONS

May not operate correctly if SV/OLE is in the RUNNING
state. Use the Stop() method before invoking this method
when in the RUNNING state.

EXAMPLE

Case “Exit”
OLEStatus = SVOLE.Exit

165

Appendix D: SV/OLE Reference

timerStrobe.Enabled = False

FUNCTION SVOLE.GetAssertion()

INTERFACE

FUNCTION GetAssertion() return String

DESCRIPTION

Returns the text of an assertion message. This method must
be called by the interface whenever SV/OLE enters the
ASSERTION_PENDING state. See also GetMessage.

INPUTS

None

OUTPUTS

The text of the assertion message, if successful.

CONDITIONS
SV/OLE must be in the ASSERTION_PENDING state.

EXAMPLE

Case PROCESS_ASSERTION_PENDING
Do While ProcessStatus = PROCESS_ASSERTION_PENDING
sText$ = SVOLE.GetAssertion
Call UpdateTranscript(“Assertion message: “ & sText$)
DoEvents
ProcessStatus = SVOLE.QueryStatus()
Loop

166

FUNCTION SVOLE.GetMessage()

FUNCTION SVOLE.GetLastError()

INTERFACE

FUNCTION GetLastError() return Long

DESCRIPTION

Returns the error code of the unsuccessful method call, or the
OK error code, if no errors have occurred.

INPUTS

None

OUTPUTS

The error code of the unsuccessful method call, or the OK
error code, if no errors have occurred.

CONDITIONS

None

EXAMPLE

if (OLEStatus = False) then
ErrorCode = SVOLE.GetLastError ‘Look for an error code

FUNCTION SVOLE.GetMessage()

INTERFACE

FUNCTION GetMessage() return String

167

Appendix D: SV/OLE Reference

DESCRIPTION

Returns the text of an assertion, user output, or VHDL run-
time error message respectively when SV/OLE is in the state
ASSERTION_PENDING, OUTPUT_PENDING, or
HALTED. Can be used in place of GetAssertion and
GetOutput.

INPUTS

None

OUTPUTS

String value representing the output or assertion message.

CONDITIONS

SV/OLE must be in one of the states
ASSERTION_PENDING, OUTPUT_PENDING, or
HALTED.

EXAMPLE

ProcessStatus = SVOLE.QueryStatus()
Select Case ProcessStatus
Case 3: ‘ASSERTION_PENDING

TranMsg$ = SVOLE.GetMessage

FUNCTION SVOLE.GetOutput()

INTERFACE

FUNCTION GetOutput() return String

168

FUNCTION SVOLE.GetSimHist()

DESCRIPTION

Returns the text of an user output message. Either this
method or the GetMessage method must be called by the
interface whenever SV/OLE enters the OUTPUT_PENDING
state. This state results from a call to the IEEE standard
writeline() procedure with a file pointer of OUTPUT. See also
GetMessage.

INPUTS

None

OUTPUTS

The text of the output, if successful.

CONDITIONS
SV/OLE must be in the OUTPUT_PENDING state.

EXAMPLE

ProcessStatus = SVOLE.QueryStatus()
Select Case ProcessStatus
Case5: 'OUTPUT_PENDING

TranMsg$ = SVOLE.GetOutput

FUNCTION SVOLE.GetSimHist()

INTERFACE

FUNCTION GetSimHist() return SimHist Object

169

Appendix D: SV/OLE Reference

DESCRIPTION

This method returns an SV/OLE object (dispatch) that pro-
vides the ability to record events on selected signals/variables
during the simulation. The interface to the SimHist server is
described later in this chapter.

INPUTS

None

OUTPUTS
The OLE object.

CONDITIONS

None

EXAMPLE

Dim SimHist as object
Set SimHist = SVOLE.GetSimHist

FUNCTION SVOLE.GetTranscriptText()

170

INTERFACE

FUNCTION GetTranscriptText() return String

DESCRIPTION

The transcript contains buffered messages produced by SV/
OLE. The GetTranscript method is called repeatedly to
retrieve the buffered transcript messages. Each successive call
returns the next line of the transcript. If no more transcript is
currently available, an empty string is returned. The method

FUNCTION SVOLE.GetTranscriptText()

can be called while SV/OLE is in state RUNNING, and will
return the transcript messages as they are produced. This
asynchronous polling system implies that the GetTranscript
call may return an empty string one time and some text at a
later time, if SV/OLE has produced any transcript messages
since the previous call. Also, note that transcript messages are
produced during initialization of a design and upon fatal
errors.

INPUTS

None

OUTPUTS

The next line of the transcript, or the empty string if no more
transcript messages are available.

CONDITIONS

None

EXAMPLE

‘Empty the transcript buffer...
TranMsg$ = SVOLE.GetTranscriptText
Do While Len(TranMsg$)
DoEvent
Call UpdateTranscript(TranMsg$)
TranMsg$ = SVOLE.GetTranscriptText
Loop

171

Appendix D: SV/OLE Reference

FUNCTION SVOLE.GetUserTypes()

172

INTERFACE

FUNCTION GetUserTypes() return String

DESCRIPTION

Returns the definitions of all user-defined types declared in
the loaded design.

INPUTS

None

OUTPUTS

A string containing the list of definitions as defined by the
following grammar:

definition-list: {definition “\n"}

definition: name “:” type

type: built-in | user-defined | array | enumeration | record

user-defined: name

array: “ARRAY” “(* index {*,” index} “)” “of” type

index: integer direction integer

enumeration: “(* name {name} “)”

record: “REC” “(“ field {field} “)”

field: name type

direction: “to” | “downto”

built-in: “integer” | “real” | “bit” | “time” | “string” | “boolean” |
“character”

CONDITIONS

A design must have been previously loaded with the Args()
method SV/OLE must have completed the initialization of the
design. (See Args() for a description of the initialization of the
design.)

FUNCTION SVOLE.GetVariables()

FUNCTION SVOLE.GetVariables()

INTERFACE

FUNCTION GetVariables() return String

DESCRIPTION

Returns a list of all variables and signals defined in the loaded
simulation executable.

INPUTS

Boolean flag indicating if the list of signals is to be reset.

OUTPUTS

A large string containing a comma-separated list of fully
prefixed VHDL identifiers. For example,
“a,b,c,mux.inl,mux.in2,mux.out”. For large simulation
executables, this string will contain only a portion of the list of
signals. To ensure that all signals are collected, the
GetVariables method must be called repeatedly until it re-
turns an empty string.

CONDITIONS

A simulation executable must have been previously loaded
with the Args() method and the initialization state must be
complete (see Args()).

EXAMPLE

L$ = SVOLE.GetVariables(True)
do while len(L$) <> 0

SigList$ = SigList & L$

L$ = SVOLE.GetVariables(False)
loop

173

Appendix D: SV/OLE Reference

DebugPrint “Available signals: “ & SigList$

FUNCTION SVOLE.GetVarType()

174

INTERFACE

FUNCTION GetVarType(String) return String

DESCRIPTION

Returns the type of a given variable/signal in a special format
given in “outputs”, below.

INPUTS

The fully prefixed name of the variable/signal for which the
type is sought.

OUTPUTS

The type as a string defined by the type rule of the following
BNF-like grammar (see example below):

type: built-in | user-defined | array

user-defined: name

array: “ARRAY” “(* index {“,” index} “)” “of” type

index: integer direction integer

direction: “to” | “downto”
built-in: “integer” | “real” | “bit” | “time” | “string” | “boolean” | “character”

For example, given the declaration

signal v : std_ulogic(7 downto 0);

the type of v returned would be the string:

“ARRAY (7 downto 0) of std_ulogic”

FUNCTION SVOLE.NameToAtom()

CONDITIONS

A simulation executable must have been previously loaded
with the Args() method and SV/OLE must have completed
the initialization of the design. (See Args() for a description of
the initialization of the design.)

EXAMPLE
SigType$ = SVOLE.GetVarType(SigName$)

FUNCTION SVOLE.NameToAtom()

INTERFACE

FUNCTION NameToAtom(String) return Long

DESCRIPTION

Variable and signal names are each given a unique integer to
represent them for more efficient internal communication and
in some of the more frequently used OLE methods. This
method converts a signal/variable name into its respective
integer.

INPUTS

Fully prefixed name of a signal or variable.

OUTPUTS

The unigque number assigned to that signal or variable.

CONDITIONS

None

175

Appendix D: SV/OLE Reference

EXAMPLE

Dim Atom as Long
Atom = NameToAtom(Signal$)

FUNCTION SVOLE.QueryDone()

INTERFACE

FUNCTION QueryDone() return Boolean

DESCRIPTION

Returns the partial status of the simulator. This method is
retained for compatibility with other Accolade servers.
QueryStatus is preferred.

INPUTS

None

OUTPUTS
True, if the kernel is in the READY state (see QueryStatus).

CONDITIONS

None

EXAMPLE:

OLEReturn = SVOLE.QueryDone()

if OLEReturn then
UpdateTranscript(“Simulation Complete!”)

end if

176

FUNCTION SVOLE.QueryStatus()

FUNCTION SVOLE.QueryPercentDone()

INTERFACE

FUNCTION QueryPercentDone() return Long

DESCRIPTION

Returns a rough approximation of the percent of the current
simulation that is complete.

INPUTS

None

OUTPUTS

The percent as a long integer with a range from 0 to 100.

CONDITIONS

None

EXAMPLE

pct = SVOLE.QueryPercentDone()
progressBarl.Value = pct

FUNCTION SVOLE.QueryStatus()

INTERFACE

FUNCTION QueryStatus() return Integer

DESCRIPTION
Returns the current status of SV/OLE.

177

Appendix D: SV/OLE Reference

178

INPUTS

None.

OUTPUTS

The status of SV/OLE as an integer defined as follows:

Status
RUNNING
READY
HALTED

Value Description

Simulation is executing.
Ready to run.

AVHDL run-time error
has occurred.

Note: An error message can be obtained with the GetMessage method

when in the HALTED state.
ASSERTION_PENDING

INPUT_PENDING

OUTPUT_PENDING

An assertion failed and
the simulator is waiting
for the interface to
handle the assertion (see
GetAssertion).

Waiting for user input.
This state results from a
VHDL call to the
readline procedure on
the file INPUT. The
interface must handle
this state (see Setlnput).

5 Waiting for the
interface to handle user
output. This state results
from a VHDL call to the
writeline procedure with

FUNCTION SVOLE.Reset()

the file OUTPUT. See
GetOutput for informa-
tion on handling this.

DEAD 6 A unrecoverable fatal
error has occurred in the
simulator and it must be
terminated with the Exit
method. An error mes-
sage will have been
reported to the transcript.

CONDITIONS

None.

EXAMPLE

ProcessStatus = SVOLE.QueryStatus()
Select Case ProcessStatus
Case PROCESS_RUNNING
Case PROCESS_READY
Case PROCESS_HALTED

End Select

FUNCTION SVOLE.Reset()

INTERFACE

FUNCTION Reset() return Boolean

DESCRIPTION

Reloads the simulation executable, resets simulation time back
to 0, and clears all watch data. (The watches will still be active,
however).

179

Appendix D: SV/OLE Reference

INPUTS

None.

OUTPUTS

True, if successful.

CONDITIONS

A design must have been previously loaded with the Args()
method and SV/OLE must be in the READY state (see
SVOLE.QueryStatus()).

EXAMPLE:

OLEStatus = SVOLE.Reset

FUNCTION SVOLE.Run()

INTERFACE
FUNCTION Run() return Boolean

DESCRIPTION
Identical to the Start() method.

FUNCTION SVOLE.RunForever()

INTERFACE
FUNCTION RunForever() return Boolean

180

FUNCTION SVOLE.SetBP()

DESCRIPTION

Starts the simulation for the amount of time given by
time’right-now.

INPUTS

None

OUTPUTS

True, if successful.

CONDITIONS

A simulation executable must have been previously loaded
with the Args() method and SV/OLE must be in the READY
state (see SVOLE.QueryStatus()).

EXAMPLE

OLEStatus = SVOLE.RunForever

FUNCTION SVOLE.SetBP()

INTERFACE

FUNCTION SetBP(String) return String

DESCRIPTION

Sets a break point for source level debugging. Since it is not
possible to set a break point at any line in a file, nor is every
line executable, the actually break point will be set at the
closest possible line following the desired line. More than one
break point can exist at a time, and break points are never
removed, except by the DeleteBP() method. The actual break
point returned by this method should be retained, since it is

181

Appendix D: SV/OLE Reference

the location of the actual break point that is required by the
DeleteBP() method, and may differ from the specified break
point location.

INPUTS

A string specifying the location of the break point. The string
should consist of the module nhame (not the path), followed by
a colon, followed by the line number. There should be no
white space in the string. For example, “adder:23”.

OUTPUTS

Returns the actual break point that was set in the same form as
the input.

CONDITIONS

A design must have been previously loaded with the Args()
method and the kernel must be in the READY state (see
QueryStatus).

EXAMPLE
dim ActualBP as string
ActualBP$ = SVOLE.SetBP(RequestedBP$)

FUNCTION SVOLE.SetInput()

INTERFACE

FUNCTION Setlnput(String) return Boolean

182

FUNCTION SVOLE.SingleStep()

DESCRIPTION

Sets the text that should be returned as the user input. This
method must be called by the interface whenever SV/OLE
enters the INPUT_PENDING state. This state results from a
user call to the IEEE standard readline() subprogram with the
file pointer INPUT.

INPUTS

The text to be returned to the readline() call.

OUTPUTS

True, if successful.

CONDITIONS
SV/OLE must be in the INPUT_PENDING state.

EXAMPLE

If KeyAscii = 13 Then 'Enter key pressed
If ProcessStatus = 4 Then 'INPUT_PENDING
SVOLE.Setlnput (textCommand.Text)
Else
ExecuteCommand (textCommand.Text)
End If
End If

FUNCTION SVOLE.SingleStep()

INTERFACE

FUNCTION SingleStep() return Boolean

183

Appendix D: SV/OLE Reference

184

DESCRIPTION

Starts the simulation for one execution step. An execution step
is either the calculation of one signal driver, or the execution
of one sequential statement, in the case when the simulation is
stopped within a VHDL process.

INPUTS

None.

OUTPUTS

True, if successful.

CONDITIONS

A design must have been previously loaded with the Args()
method and the kernel must be in the READY state (see
QueryStatus).

EXAMPLE

‘We need to loop until we have a new line or

'source file returned...
Do While True

If SVOLE.SingleStep() = False Then Exit Do

BPString$ = SVOLE.CurrentBP()

i% = InStr(BPString$, ":")

ModuleName$ = Left$(BPString$, i% - 1)

LineNumber% = Val(Mid$(BPString$, i% + 1))

‘Different file or different line?

If ModuleName$ <> LastModule$ Or LineNumber% <> LastLine Then

Exit Do

End If

DoEvents ‘Allow Stop button, etc. to be clicked (could get stuck here)
Loop

FUNCTION SVOLE.Stop()

FUNCTION SVOLE.Start()

INTERFACE

FUNCTION Start() return Boolean

DESCRIPTION

Starts the simulation running. SV/OLE will run for the num-
ber of time units indicated by the time step (see the TimeStep
property) unless interrupted (see the Stop method).

INPUTS

None

OUTPUTS

True, if successful.

CONDITIONS

A simulation executable must have been previously loaded
with the Args() method and SV/OLE must be in the READY
state (see QueryStatus).

EXAMPLE

SVOLE.TimeUnits = TimeUnitString$ * “ns”, “ps”, etc.
SVOLE.TimeStep = Format$(EndTime)
OLEStatus = SVOLE.Start

FUNCTION SVOLE.Stop()

INTERFACE

FUNCTION Stop() return Boolean

185

Appendix D: SV/OLE Reference

186

DESCRIPTION

Halts the current simulation. SV/OLE is non-preemptive,
meaning that the simulation will stop as soon as possible. “As
soon as possible” means: if SV/OLE was computing the new
value of a signal driver, the simulation will stop after the new
value is fully computed. If SV/OLE was executing a user
defined or implicit VHDL process, then it will stop as soon as
that process suspends. If the Stop() method is called during
the execution of a readline function from the text 1/0 pre-
defined file INPUT, then the empty string “”” will be returned
from the read call and execution will be aborted as soon as the
containing process suspends. Note, however, that the Stop
method returns immediately (regardless of whether the
current processing has yet halted), so the QueryStatus()
method must be used to determine when the simulation has
actually stopped.

INPUTS

None

OUTPUTS

True, if successful.

CONDITIONS
SV/OLE must be in state RUNNING or INPUT_PENDING.

EXAMPLE

if UserPressedStop = True then
OLEStatus = SVOLE.Stop

PROPERTY SVOLE.TimeStep

FUNCTION SVOLE.TimeNow()

INTERFACE

FUNCTION TimeNow() return Long

DESCRIPTION

Returns the current simulation time.

INPUTS

None

OUTPUTS

The current simulation time in the units specified by the
TimeUnits property.

CONDITIONS

The value returned by this method may be corrupted unless
SV/OLE is in one of the following states (see QueryStatus() of
the simulation server) READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING.

EXAMPLE

Dim CurTime As Long
CurTime = SVOLE.TimeNow

PROPERTY SVOLE.TimeStep

INTERFACE

PROPERTY String TimeStep

187

Appendix D: SV/OLE Reference

DESCRIPTION

The time step is the amount of time that is simulated when the
Start method is called. (It is not the ending simulation time.)
The string should contain an integer number of time units.
The time unit is taken to be the current value of the TimeUnits
property, at the time that TimeStep is changed.

CONDITIONS

The TimeUnits property must be set before setting this prop-
erty.

EXAMPLE:

SVOLE.TimeUnits = TimeUnitString$ * “ns”, “ps”, etc.
SVOLE.TimeStep = Format$(EndTime)
OLEStatus = SVOLE.Start

PROPERTY SVOLE.TimeUnits

188

INTERFACE

PROPERTY String TimeUnits

DESCRIPTION

All time values are exchanged between the SV/OLE server
and the client application without explicit time units. This
property is set to the implicitly assumed time unit for all
exchanged time values. It is a string containing one of the unit

names of predefined type TIME (“fs”, “ps”, “ns”,

sec”, “min”).

us-, ms-,

CONDITIONS

None

Simulation History (SimHist) Interface

EXAMPLE

SVOLE.TimeUnits = TimeUnitString$ * “ns”, “ps”, etc.
SVOLE.TimeStep = Format$(EndTime)
OLEStatus = SVOLE.Start

Simulation History (SimHist) Interface

The simulation history data (encapsulated in an OLE server
object called SimHist) are obtained by calling the
GetSimHist() method of the SV/OLE simulation server
(SVOLE). The purpose of this server object is to allow the
client to request from the simulator server all value changes
(events) for selected signals or variables. The record of events
is maintained by the SV/OLE simulation server, and may be
accessed by the client whenever the server is in a READY,
INPUT_PENDING, OUTPUT_PENDING, or
ASSERTION_PENDING state. Typical uses of this client/
server relationship are to create waveform displays, perform
trace dumps, or dynamically exchange simulation data with
other applications such as schematic editors.

Before use, a SimHist object must first be created with the
GetSimHist method (described in the previous section), as
shown below (Visual Basic):

Set SimHist = SVOLE.GetSimHist

The basic order of operations when accessing simulation event
data via the SimHist object is as follows:

1. Create the SimHist object using the GetSimHist method
as described above.

2. Indicate to SV/OLE which signals/variables are of inter-
est, using the AddWatch(), DeleteWatch() and other
methods.

3. Start the simulation (as described in the previous section),
allowing SV/OLE to record all value changes (events) for
the selected signals or variables.

189

Appendix D: SV/OLE Reference

4. When SV/OLE is in the READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING state,
access the SimHist event data to display or otherwise act
upon the event data.

5. Depending on the nature of the interface, the ClearAll()
and ClearEvents() methods may be used to clear the event
data in the SimHist object. This clearing of data can be
done whenever SV/OLE is in the READY,
INPUT_PENDING, OUTPUT_PENDING, or
ASSERTION_PENDING state. Clearing the data can help
to avoid storing event data twice, and can save memory.

FUNCTION SimHist.AddWatch()

190

INTERFACE

FUNCTION AddWatch(String) return Boolean

DESCRIPTION

Adds a particular signal/variable to SV/OLE’s list of
“watched” signals and variables. These are the signals and
variables for which SV/OLE is recording value changes
during the simulation. A watch can be added and removed
from the list at any time (almost, see conditions below). The
changes in value are recorded only for the duration for which
the signal or variable is on the list.

INPUTS

The fully prefixed name of the signal or variable to add to the
list.

OUTPUTS

True, if successful.

FUNCTION SimHist.ClearAll()

CONDITIONS

A design must have been previously loaded with the Args()
method. SV/OLE must be in one of the following states (see
SVOLE.QueryStatus()) READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING.

EXAMPLE

OLEStatus = SimHist.AddWatch (SigName$)

FUNCTION SimHist.ClearAll()

INTERFACE

FUNCTION ClearAll() return Boolean

DESCRIPTION

Deletes all recorded values for all signals. Any changes that
occur in the future will still be recorded for the signals and
variables on SV/OLE’s watch list. The client application may
do this to free memory resources, if this information is no
longer needed or has been copied by the client.

INPUTS

None

OUTPUTS

True, if successful.

191

Appendix D: SV/OLE Reference

CONDITIONS

A design must have been previously loaded with the Args()
method. The SV/OLE server must be in one of the following
states (see SVOLE.QueryStatus()) READY,
INPUT_PENDING, OUTPUT_PENDING, or
ASSERTION_PENDING.

EXAMPLE

‘Clear all events...
OLEStatus = SimHist.ClearAll

FUNCTION SimHist.ClearEvents()

192

INTERFACE

FUNCTION ClearEvents(Atom: Long) return Boolean

DESCRIPTION

Deletes all recorded values for the given signal or variable.
Any changes that occur in the future will still be recorded if
the signal/variable is on SV/OLE’s watch list. The client
application may do this to free memory resources, if this
information is no longer needed or has been copied by the
client.

INPUTS

Atom is the unique integer assigned to the variable or signal
whose records are to be removed (see SVOLE.NameToAtom).

OUTPUTS

True, if successful.

FUNCTION SimHist.DeleteEvents()

CONDITIONS

A design must have been previously loaded with the Args()
method and a watch must have been created for the desired
signal or variable with the AddWatch() method. SV/OLE
must be in one of the following states (see
SVOLE.QueryStatus()) READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING.

EXAMPLE

‘Clear all events for a signal...
OLEStatus = SimHist.ClearEvents(Atom)

FUNCTION SimHist.DeleteEvents()

INTERFACE
FUNCTION DeleteEvents(Atom:Long,From:Long,To:Long) return Boolean

DESCRIPTION

Deletes the events recorded during a given range of simula-
tion time. Any recorded events before and after the range will
remain, and any changes that occur in the future will still be
recorded, if the signal/variable is on the simulator’s watch
list.

INPUTS

Atom is the unique integer assigned to the variable or signal
whose records are to be removed (see
SVOLE.NameToAtom()). The From and To arguments specify
the time range of the record to be deleted. The assumed time
units for these time values is taken from the TimeUnits prop-
erty.

193

Appendix D: SV/OLE Reference

OUTPUTS

True, if successful.

CONDITIONS

A design must have been previously loaded with the Args()
method and a watch must have been added for the desired
signal/variable with the AddWatch() method. The kernel
must be in one of the following states (see
SVOLE.QueryStatus()) READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING.

EXAMPLE

‘Clear events for a range of time...
OLEStatus = SimHist.DeleteEvents(Atom, StartTime, EndTime)

FUNCTION SimHist.DeleteWatch()

194

INTERFACE
FUNCTION DeleteWatch(String) return Boolean

DESCRIPTION

Removes a particular signal/variable from the list of
“watched” signals and variables. These are the signals and
variables for which SV/OLE is recording value changes
during the simulation. A watch can be added and removed
from the list at any time (almost, see conditions below). The
changes in value are recorded only for the duration for which
the signal/variable is on the list.

INPUTS

The fully prefixed name of the signal or variable to remove
from the list.

FUNCTION SimHist.GetEvents()

OUTPUTS

True, if successful.

CONDITIONS

A design must have been previously loaded with the Args()
method and a watch must have been added for the given
signal or variable with the AddWatch() method. The kernel
must be in one of the following states (see QueryStatus() of
the simulation server) READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING.

EXAMPLE

‘Delete a watch...
OLEStatus = DeleteWatch(Signal$)

FUNCTION SimHist.GetEvents()

INTERFACE

FUNCTION GetEvents(Atom:Long,From:Long,To:Long) return Eventlterator
Object

DESCRIPTION

Returns an Eventlnterator OLE object which can be used to
access the recorded values of a given signal or variable record
during a certain duration of time. The Eventlterator OLE
object is described later in this chapter.

INPUTS

Atom is the unique integer assigned to the variable or signal
whose record that is to be accessed (see NameToAtom of SV/
OLE). The From and To fields specify the time range of the
record to be accessed. The assumed time units for these time

195

Appendix D: SV/OLE Reference

values is taken from the TimeUnits property. For example, if
the atom for the signal clk is 1 and the TimeUnits property is
“ns”, then the call GetEvents(1,100,200) will return an iterator
containing the value changes of the signal clk that occurred
between 100ns and 200ns.

OUTPUTS
An Eventlterator OLE object (described below).

CONDITIONS

A design must have been previously loaded with the Args()
method and a watch must have been added for the desired
signal or variable with the AddWatch() method. SV/OLE
must be in one of the following states (see QueryStatus() of
the simulation server) READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING.

EXAMPLE

Set Eventlterator = SimHist.GetEvents(Atom, StartTime, EndTime)
emptyflag = SimHist.ISEmpty 'See if there are events for this signal
If emptyflag = False Then 'If there are events...

‘Traverse the list to get the events...

FUNCTION SimHist.GetValueAt()

196

INTERFACE

FUNCTION GetValueAt(Atom:Long,Time:Long) return Event Object

DESCRIPTION

Returns an Event OLE object, which provides access to the
given signal/variable value at the given time. The Event OLE
object is described later in this document.

FUNCTION SimHist.GetWatches()

INPUTS

Atom is the unique integer assigned to the variable or signal
whose value is sought. Time is the time value for which the
value is sought. The assumed time units for this time value is
taken from the TimeUnits property.

OUTPUTS
An Event OLE object (described below).

CONDITIONS

A design must have been previously loaded with the Args()
method and a watch must have been added for the desired
signal or variable with the AddWatch() method. SV/OLE
must be in one of the following states (see QueryStatus() of
the simulation server) READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING.

EXAMPLE

Event = SimHist.GetValueAt(Atom, T)
UpdateTranscript(“Value at time “ & Format$(T) & “ is “ & Event.Value)

FUNCTION SimHist.GetWatches()

INTERFACE

FUNCTION GetWatches() return String

DESCRIPTION

Returns the list of signals/variables currently being
“watched” by SV/OLE. These are the signals and variables
for which SV/OLE is recording changes in value during the
simulation.

197

Appendix D: SV/OLE Reference

INPUTS

None

OUTPUTS

A string of comma separated fully prefixed variable and signal
names.

CONDITIONS

A design must have been previously loaded with the Args()
method. The kernel must be in one of the following states (see
QueryStatus() of the simulation server) READY,
INPUT_PENDING, OUTPUT_PENDING, or
ASSERTION_PENDING.

EXAMPLE

Dim Watches As String
Watches$ = SimHist.GetWatches

FUNCTION SimHist.TimeNow()

198

INTERFACE
FUNCTION TimeNow() return Long

DESCRIPTION

Returns the current simulation time.

INPUTS

None

PROPERTY SimHist.TimeUnits

OUTPUTS

The current simulation time in the units specified by the
TimeUnits property.

CONDITIONS

The value returned by this method may be corrupted unless
the kernel is in one of the following states (see
SVOLE.QueryStatus()) READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING.

EXAMPLE

Dim CurTime as Long
CurTime = SimHist. TimeNow

PROPERTY SimHist.TimeUnits

INTERFACE
PROPERTY String TimeUnits

DESCRIPTION

All time values exchanged between the server and client are
without explicit time units. This property is set to the implic-
itly assumed time unit for all exchanged time values. Itisa
string containing one of the unit names of predefined type
TIME (“fs”, “ps”, “ns”, “us”, “ms”, “sec”, “min”).

CONDITIONS

None

EXAMPLE

SimHist.TimeUnits = “ps”

199

Appendix D: SV/OLE Reference

Event Iterator (Eventlterator).

The event iterator (Eventlterator server object) is obtained
only by calling the GetEvents() method of the OLE simulation
history server. The purpose of this server object is to provide
the client application access to a list of events.

An event for this purpose is defined as a change in value of a
signal or variable that occurs at a certain point in simulation
time. The iterator merely provides a means of traversing a list
of such events.

There are two mechanisms for obtaining the events, either
one-at-a-time via the Event object, or in “chunks” using the
GetAsString method. The GetAsString method is provided
to overcome speed problems that may occur do the overhead
of making OLE calls. The Event object interator methods for
accessing individual events requires a few OLE calls for each
event in the list. The GetAsString method, on the other hand,
will typically require two orders of magnitude fewer OLE calls
when accessing large number of events.

During the following descriptions you should assume that
there is some imaginary pointer, for each of the two methods
described, which points to some location in the list of events.
Note that only one of the access methods described (either
GetAsString or the methods that return Event objects) should
be used exclusively for a given list.

The following sections provide a reference of all of the meth-
ods available from the default dispatch of this OLE server
object.

FUNCTION Eventlterator.Current()

INTERFACE

FUNCTION Current() return Event Object

200

FUNCTION Eventlterator.First()

DESCRIPTION

Returns the Event object pointed to by the current pointer.

INPUTS

None

OUTPUTS

Returns the Event object pointed to by the current pointer.

CONDITIONS

The IsEmpty() method should be called first, to ensure that
the list is not empty.

EXAMPLE

‘Get the event object at the current position...
Event = Eventlterator.Current

FUNCTION Eventlterator.First()

INTERFACE

FUNCTION First() return Event Object

DESCRIPTION

Sets the current pointer for the Event object to the first event
in the list, and returns the first event as that object.

INPUTS

None

201

Appendix D: SV/OLE Reference

OUTPUTS

Returns the first Event object in the list. If the list is empty,
returns NULL.

CONDITIONS

The IsEmpty() method should be called first, to insure that the
list is not empty.

EXAMPLE

‘Get the first event in the list...
Event = Eventlterator.First

FUNCTION Eventlterator.GetAsString()

INTERFACE

FUNCTION GetAsString() return String

DESCRIPTION

Returns some number of events (a maximum of 200), of the
events in the list, starting with the event pointed to by the
current pointer of the string method. The current pointer is
updated to point to the event following the last one returned
by this call. Each event is represented as text, and all the
returned events are returned in a single string. The method
can be called repeatedly to obtain all the events in the list.

INPUTS

None

202

FUNCTION Eventlterator.GetAsString()

OUTPUTS

A large string of event text. The first part of the string con-
tains a character followed by an integer number and indicates
the status of the traversal of the list. The three possible values
and their meaning follow:

Character Description

E (empty) The list is empty; the integer number
will be 0.

C (complete) There are no events in the list after the

ones being returned by this call. The
integer number is the number of events
returned by this call.

I (incomplete) There are still events in the list after the
ones being returned by this call. The
integer number is the number of events
returned by this call.

The character is followed by a single space, and the integer
number is right justified in a field of 10 characters. The inte-
ger is immediately followed by a colon. Following the colon is
a list of colon separated events. Each event is represent as an
integer time value followed by a single space and the text
representation of the new value stored at that time value. The
time value assumes the implicit time unit specified by the
TimeUnits property of the SimHist OLE server object. The
text representation of values is described for the Value()
method of the Event object later in this chapter. An example
of a string returned by this method for a bit signal might be:
“C 3:00: 10 1: 2007, meaning the signal became 0 at time 0,
1 at time 10 and 0 again at time 20.

203

Appendix D: SV/OLE Reference

204

CONDITIONS

The kernel must be in one of the following states (see
SVOLE.QueryStatus()) READY, INPUT_PENDING,
OUTPUT_PENDING, or ASSERTION_PENDING.

EXAMPLE

EventString$ = Eventlterator.GetAsString 'Get a batch of events
EventCode$ = Left$(EventString$, 1)
Do While EventCode$ <> "E"
e% =1 ‘Current offset into the EventString
' Now read the Events...
Do While True
'Find next event in the string...
€% = InStr(e%, EventString$, ":")
If €% = 0 Then
Exit Do 'Ran out of events
Else
e%=e%+1
End If
'e% now points to the first event time
e1% = InStr(e%, EventString$, " ")
If e1% <= e% Then Exit Do
'Parse out the event time...
EventTimeString$ = Mid$(EventString$, e%, e1% - e%)
EventTime = Val(ET$)
el =el%+1 'Move to start of data value field
'‘Get the event data field...
e2% = InStr(e1%, EventString$, ":") 'Find end of data field
If e2% <= e1% Then
€2% = Len(EventString$) + 1
Else
e2% = e2%
End If
EventValue$ = Mid$(EventString$, e1%, e2% - e1%)

****Process the event (display, etc.) here****

Loop 'Events in the object
If EventCode$ = "C" Then 'We are done (complete list)
Exit Do
End If
EventString$ = Eventlterator.GetAsString 'Get next batch of events
EventCode$ = Left$(EventString$, 1)

FUNCTION Eventlterator.IsFirst() return Boolean

Loop 'GetEventAsString loop

FUNCTION Eventlterator.IsEmpty/()

INTERFACE

FUNCTION ISEmpty() return Boolean

DESCRIPTION

Determines if the Eventlterator list is empty.

INPUTS

None

OUTPUTS
True, if the list is empty.

CONDITIONS

None

EXAMPLE

emptyflag = Eventlterator.ISEmpty 'See if there are events for this signal
If emptyflag = False Then 'If there are events...
‘Process the events...

FUNCTION Eventlterator.IsFirst() return Boolean

INTERFACE

FUNCTION IsFirst() return Boolean

205

Appendix D: SV/OLE Reference

DESCRIPTION

Determines, if the current pointer of the Eventlterator list is
pointing to the first element in the list.

INPUTS

None

OUTPUTS

True, if the current pointer points to the first event in the list.

CONDITIONS

The IsEmpty() method should be called first, to ensure that
the list is not empty.

EXAMPLE

firstflag = Eventlterator.IsFirst

FUNCTION Eventlterator.IsLast()

206

INTERFACE

FUNCTION IsLast() return Boolean

DESCRIPTION

Determines, if the current pointer of the Eventlterator list is
pointing to the last element in the list.

INPUTS

None

FUNCTION Eventlterator.Last()

OUTPUTS

True, if the current pointer points to the last Event in the list.

CONDITIONS

The IsEmpty() method should be called first, to ensure that
the list is not empty.

EXAMPLE

lastflag = Eventlterator.IsLast

FUNCTION Eventlterator.Last()

INTERFACE

FUNCTION Last() return Event Object

DESCRIPTION

Sets the current pointer for the Eventlterator list to the last
event in the list, and returns the last event as an object.

INPUTS

None

OUTPUTS

Returns the last Event object in the list, if the list is not empty;,
otherwise NULL.

CONDITIONS

The IsEmpty() method should be called first, to insure that the
list is not empty.

207

Appendix D: SV/OLE Reference

EXAMPLE

Event = Eventlterator.Last

FUNCTION Eventliterator.Next()

208

INTERFACE

FUNCTION Next() return Event Object

DESCRIPTION

Moves the current pointer for the Eventlterator list to the next
event in the list, and returns the next event as an object.

INPUTS

None

OUTPUTS

Returns the next Event object in the list, if the current pointer
was not previously at the end of the list.

CONDITIONS

The IsLast() method should be called first, to ensure that the
pointer is not currently at the end of the list.

EXAMPLE

Event = Eventlterator.Next

FUNCTION Eventlterator.Reset()

FUNCTION Eventlterator.Previous()

INTERFACE

FUNCTION Previous() return Event Object

DESCRIPTION

Moves the current pointer for the Eventlterator list to the
previous event in the list, and returns the previous event as an
object.

INPUTS

None

OUTPUTS

Returns the previous Event object in the list, if the current
pointer was not previously at the beginning of the list.

CONDITIONS

The IsFirst() method should be called first, to insure that the
pointer is not current at the beginning of the list.

EXAMPLE

Event = Eventlterator.Previous

FUNCTION Eventlterator.Reset()

INTERFACE

FUNCTION Reset() return void

209

Appendix D: SV/OLE Reference

DESCRIPTION

Resets the current pointer for the GetAsString method back to
the beginning of the list.

INPUTS

None

OUTPUTS

None

CONDITIONS

None.

EXAMPLE

Eventlterator.Reset

Event Object (Event).

The event server object (Event) is obtained only by calling
certain methods of the SimHist and Eventlterator server
objects. The Event server object provides access to the data of
a specific event. The following sections describe all of the
methods available from the default dispatch of this OLE
server.

FUNCTION Event.Time()

INTERFACE

FUNCTION Time() return Long

210

DESCRIPTION

Returns the time at which this event occurred.

INPUTS

None

OUTPUTS

Integer time value. The implicit time unit is that of the
TimeUnits property of the SimHist OLE server.

CONDITIONS

None

EXAMPLE

Event = Eventlterator.Next
UpdateTranscript(“Value is “ & Event.Value & “ at time “ &
Format$(Event.Time)

FUNCTION Event.Value()

INTERFACE

FUNCTION Value() return String

DESCRIPTION

Returns the value of the signal or variable at this event.

INPUTS

None

211

212

OUTPUTS

A string representation of the value. If the value is a scalar
value it is represented as follows:

Type Representation

Integer The integer value.

Bit The integer 0 for ‘0’ and 1 for ‘1",
Boolean The integer 0 for FALSE, 1 for TRUE.
Enumeration The integer representation of the enu-

merate. Each enumerate is assigned a
successive integer number as declared
in the enumeration declaration from left
to right, starting with 0. Thus, the
integer for (RED,WHITE,BLUE) would
be 0 for RED, 1 for WHITE, and 2 for

BLUE.
Character The character enclosed by single quotes.
Real The real value.
Time An integer specifying the time in the

base unit of the type Time.
String The string.

If the type of the value is an array or a record, than its text
representation is a comma separated list of the text representa-
tions of its elements. For arrays the list is given from the ‘left
element to the ‘right element. For records, it is given as they
appear in the record definition from the first element to the
last element.

CONDITIONS

The kernel must be in one of the following states (see
QueryStatus() of the simulation server) READY,
INPUT_PENDING, OUTPUT_PENDING, or

ASSERTION_PENDING.

EXAMPLE

Event = Eventlterator.Next
UpdateTranscript(“Value is “ & Event.Value & “ at time “ &
Format$(Event.Time)

213

214

Index

.O files 67
1076-1993 62

A

ABEL 94
Access type 135
Accessing event data 85
Accolade.sim.1 81
Actual parameter 135
Add module 20
Add primaries 52
Adding existing VHDL module 20
Adding functionality 29
AddWatch 87, 88
Aggregate 135
Allocator 136
Altera AHDL 58
Architecture 26, 100, 105, 136
body 136
Architecture declaration 100, 102
Args 75
Args method 81
Array 103, 136
example 163
ASCIlI file 172

Assert 127

Assert statement 177
ASSERTION_PENDING 88
Asynchronous reset 115, 116
Atom 89

Attributes 136

Authorization code 9, 12
Available signals window 63
Available window 53

B

Background clock 35, 128
Barrel shifter 115

source file 115
Base type 136
Behavior 108, 109
Binding 137
Binding of architectures 105
Bit data type 101, 103
Bit slice 120
Bit_vector data type 101, 103
Block 137
Block diagram 108, 110
Boolean data type 103
Bottom up to selected 44

215

Index

Breakpoint 5, 57, 64
Button

go 58, 65

step into 65

step over 65

step time 65

C

C 94
C++ 94
Character data type 103
ChipTrip 58
Combinational circuit 99
Combinational logic

vs. registered 121
Comment field 113
Comparator 112

source file 112
Compile 137
Compile into library 44
Compile only if out of date 44
Compile options 44, 67
Compiler 2
Compiling 32, 41

simulation 44
Component 124, 137

example 154
Component declaration 106, 137
Component instantiation 111
Composite type 137
Concatenation operation 120
Concurrent 138
Concurrent signal assignment 122
Conditional assignment 102
Conditional signal assignment 114
Configuration 107, 138
Constant 106, 138
Constant declaration 106
Constraint 138
Counter

example 150

test bench 152

using T flip-flops 154
CRC generator 161

test bench 162
CRC-CCITT standard 161

216

CreateObject 75
CreateObject function 81
Creating a new project 16
Creating a VHDL Module 18
CUPL 94

Cursors 55

D

Data type 101, 103
Dataflow 108, 109, 121
Debug window 5, 57

source-level debugging 57
Debugging 2
Declaration 139
Declared entity 138
Default interface 154
Delete 55

object files 69
Delta cycle 139
Dependencies 47, 50
Dependency features 2, 41, 45
Descending range 139
Design entity 100, 139
Design hierarchy 124
Design management 1
Design unit 15, 22, 48, 104, 139
Direction of ports 101
Disk space 9
Display range 55
Displayed window 52
Driver 140
Driving game 58
Dynamic cursor 55

E

Element 140
Enable source level debugging 62
Entity 100, 105, 140
declaration 100, 116
name 26
Enumerated type 140
example 166
Enumeration iteral 140
Event 141
attribute 120

objects 86, 88

processing 82
Event-driven software 109
Eventlterator 86, 88

object 89
Exclusive-OR gate 158
Exit 76

condition 141

method 81
Expression 141

F

Fibonacci sequence 172
example 172
test bench 174
Field name 141
FIFO 172
File type 141
Files
reading and writing 172
Flip-flop 109, 118
implied 121
procedure 122
For loop 141
Formal parameter 123, 142
Function 142

G

Generate statements

example 158
Generic 142
Generic list 105
GetAtomFromName 89
GetEvents 89
GetMessage 76
Getpizza

"chiptrip" example 58
GetSimHist method 86
GetTranscriptText 76, 78
GetVariables 88
Global declaration 142
Go button 54, 65

H

Hardware / software co-simulation 6

Index

Hierarachy browser 1

Hierarchical schematic 111
Hierarchy 124, 142

Hierarchy browser 22, 34, 43, 60
High-level design tools 1

History of VHDL 95

Horizontal scroll bar 55

Identifier 142
IEEE 96
standard 1076 96
standard 1076.3 97, 150
standard 1076.4 98
standard 1164 96, 112
IEEE standard logic library 48
If-then-elsif 119
Index 143
Infinite loop 143
Input stimulus 34
INPUT_PENDING 84, 88
Installing PeakVHDL 9
Integer data type 103
Intermediate output file 46
Iteration scheme 143

L

Language Reference Manual 129
Levels of Abstraction 107
Library 143
Library files 6
Library statement 113, 116
Library unit 104
Link only if out of date 48
Link operation 48
Link options 46, 61
Linking 41

for simulation 46
Linking, result of 49
ListEvents 82
Literal 143
Load button 51
Load simulation button 51
Loading simulation 41, 51, 62
Loop 143

217

Index

Looping features 127
M

Measurement line 55
Mode 26, 105, 116, 144
Modules 2, 15
Monitoring event data 85
Multiplexer 114

N

Named association 144

Named entity 144

Netlist 108, 110, 124
languages 95

Nets 124

New project 16

NTSC color video 166

Numeric standard 97

Numeric_std 150

O

Object 120, 144
Object file 46, 48
OLE class name 81
Options dialog 17
Output value checking 34
Output values

checking of 128
OUTPUT_PENDING 88

P

Package 105
Package body 105, 106
PALASM 94
Parameter 144
actual 123
formal 123
Parity generation 158
test bench 159
Pascal 94
PeakFPGA synthesis 12
PeakLIB 6, 67
PeakOPT optimization 12
PeakSIM 51

218

PeakSIM application 52
PeakVHDL 1, 9

installing 9
PeakVHDL libraries 67
Personal authorization code 12
Physical type 103, 144
Port declaration 101
Port declarations window 27
Port list 26
Ports 100, 145
Positional association 145
Procedure 121, 145
Process 115, 116, 127, 145, 166

caveats 118

multiple 118

using 115
Process statement 35, 117
Professional edition 3, 5
Project file 15
Project hierarchy 22
Project name 16
Project options 16

Q

QueryPercentDone 76, 79
QueryStatus 76, 78

R

Range 145
READY state 84, 88
Real data type 103
Rebuild hierarchy 22
Rebuild hierarchy button 34
Rebuilding project hierarchy 34
Record 145
Record data type 103
example 162
Register chain 161
Registered logic
vs. combinational 121
Registering your software 11
Registration system 12
Remove all cursors 55
Reset 76
Reset method 81

Resolution function 146
Rising edge 118
Rising_edge function 152
Run to time 50

Running simulation 64

S

Save module as 20
Save options as default 18
Scalar 146
Schematic 111
Schematic editors 1
Select display objects 52
Selected signal assignment 114
Sensitivity list 117, 118
Sequential 118, 146
Sequential signal assignments
example 161
Serial number 9, 12
Setting project options 16
Setting signal watches 87
Shift register 26
Show hierarchy button 22, 34
Signal 146
Signal declaration 146
Signal monitoring 82
Signal selection dialog 63
Signals 120
Signals and variables
differences 161
Signed data type 98
SimHist 86, 87
SimHist object 86, 88
Simulation
executible 72, 82, 85
features 2
linking 46
modeling 94
options 49
Simulator
features 41
Site license 12
Slice 147
Source code editor 43
Source file 147
Source file display window 58

Index

Source-level debugging 5, 58
Standard Delay Format 98
Standard logic package 97
Start 76, 81
State machine 166
example 166
Std_logic data type 97
Std_ulogic data type 112
Std_ulogic_vector data type 112
Step value 50
Stimulus 126
String 147
String data type 103
Structural VHDL 124
Structure 108, 110
Styles 107
Subprogram 106, 147
Subtype declaration 106
SV/OLE
methods and properties 75
server 71
SV/OLE 6
SV/OLE Reference 179
Svole application 72
Symbolic test commands 60
Synthesis 108, 109, 126
conventions 115
results 121
Synthesis standard 97
System requirements 9

T

Template module 25

Temporary authorization code 11

Test bench 34, 94, 108, 126, 147
source file example 128

Test bench wizard 34, 35

Test bench wizard button 35

Test benches 25

Test stimulus 37

Test vectors 127, 172

Text Commands 79

Text I/O 56, 83, 172

Time unit 50, 148

Timer control 77

TimerStrobe 77

219

Index

TimeStep 76, 81
TimeUnit 76, 81
Timing specifications 109
Top-down 110
Top-level
modules 43
test bench 43
Transaction 147
Transcript window 33, 46
Transistor-level description 110
Type 148
Type conversion 103, 148
example 150
Type declaration 106, 148

U

Unit under test 34, 126
Unsigned data type 98
Use clause 113

Use statement 116
Using simulation 41

\Y,

Variable 120, 148
Variable assignments 161
Vector display format 50
Verifying port list 36
Verilog HDL 98
VHDL 2
1076.4 standard 98
as standard language 95
examples gallery 149
history of 95
standard 1076 96
standard 1076-1987 96
standard 1076-1993 97
standard 1076.3 97, 150
standard 1164 96, 112
styles of 107
what is VHDL? 93
VHDL identifiers 26
VHDL language 1
VHDL Made Easy 58
VHDL source files 15
VHDL wizard 19, 25

220

Video frame grabber 166
test bench 169

Visual Basic 6

Visual basic 71

Visual C++ 6, 71

VITAL initiative 98

w

Wait statement 117, 127
Watch list 87
WatchSignal 82, 87
Waveform 55, 148
Waveform display 42, 55
When-else statement 114
Work 67

Working directory 16

Z

Zoom in button 55

